[Jump to code hierarchy]

Planar-perfect-tensor code[1,2]

Alternative names: Block-perfect-tensor code, Perfect-tangle code.

Description

Block quantum code whose encoding isometry is a block perfect tensor, i.e., a tensor which remains an isometry under partitions into two contiguous components in a fixed plane. This code stems from a planar maximally entangled state [3].

Cousins

Member of code lists

Primary Hierarchy

Parents
Planar-perfect-tensor code
Children
The \([[5,1,2]]\) rotated surface code is the smallest SCF holographic code. The encoding of more general SCF holographic codes is a holographic tensor network consisting of the encoding isometry for the \([[5,1,2]]\) rotated surface code, which is a planar-perfect tensor.
The Steane code is the smallest heptagon holographic code. The encoding of more general heptagon holographic codes is a holographic tensor network consisting of the encoding isometry for the Steane code, which is a planar-perfect tensor.

References

[1]
J. Berger and T. J. Osborne, “Perfect tangles”, (2018) arXiv:1804.03199
[2]
R. J. Harris, N. A. McMahon, G. K. Brennen, and T. M. Stace, “Calderbank-Shor-Steane holographic quantum error-correcting codes”, Physical Review A 98, (2018) arXiv:1806.06472 DOI
[3]
M. Doroudiani and V. Karimipour, “Planar maximally entangled states”, Physical Review A 102, (2020) arXiv:2004.00906 DOI
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: block_perfect

Cite as:
“Planar-perfect-tensor code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2024. https://errorcorrectionzoo.org/c/block_perfect
BibTeX:
@incollection{eczoo_block_perfect, title={Planar-perfect-tensor code}, booktitle={The Error Correction Zoo}, year={2024}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/block_perfect} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/block_perfect

Cite as:

“Planar-perfect-tensor code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2024. https://errorcorrectionzoo.org/c/block_perfect

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/quantum/properties/block/tensor_network/single_tensor/block_perfect.yml.