[Jump to code hierarchy]

\([[m 2^m / (m+1), 2^m / (m+1), 2\lfloor m/4 \rfloor + 1]]\) Khesin-Lu-Shor code[1]

Description

A family of \([[m 2^m / (m+1), 2^m / (m+1),]]\) qubit CSS codes derived from the Hamming code. Their encoder-respecting form is the graph of a hypercube in \(m = 2^r - 1\) dimensions, and input nodes in the graph are codewords of the \([2^r-1,2^r-r-1,3]\) Hamming code [1].

Protection

The code distance is bounded above and conjectured to be \(m\) [1].

Cousins

Primary Hierarchy

Parents
\([[m 2^m / (m+1), 2^m / (m+1), 2\lfloor m/4 \rfloor + 1]]\) Khesin-Lu-Shor code
Children
The Khesin-Lu-Shor code for \(r=2\) and \(m=2^r - 1 = 3\) is the \(C_6\) code.

References

[1]
A. B. Khesin, J. Z. Lu, and P. W. Shor, “Universal graph representation of stabilizer codes”, (2025) arXiv:2411.14448
Page edit log

Cite as:

\([[m 2^m / (m+1), 2^m / (m+1), 2\lfloor m/4 \rfloor + 1]]\) Khesin-Lu-Shor code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2024. https://errorcorrectionzoo.org/c/kls

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/quantum/qubits/small_distance/kls.yml.