[Jump to code hierarchy]

\([2^m,m+1,2^{m-1}]\) First-order RM code

Alternative names: Biorthogonal code, RM\((1,m)\) code, Augmented Hadamard code.

Description

A member of the family of first-order RM codes. Its codewords are the rows of the \(2^m\)-dimensional Hadamard matrix \(H\) and its negation \(-H\) with the mapping \(+1\to 0\) and \(-1\to 1\). The family is self-orthogonal for \(m \geq 3\) [1]. They form a \((2^m,2^{m+1})\) biorthogonal spherical code under the antipodal mapping.

The automorphism group of the code is \(GA_{m}(\mathbb{F}_2)\) [2].

Decoding

First-order RM codes admit specialized decoders, such as the Fast Hadamard Transform decoder [3].

Realizations

The \([32, 6, 16]\) RM\((1,5)\) code was used for the 1971 Mariner 9 spacecraft [4].

Notes

See Ref. [5] for the weight distribution of the \(2^{26}\) cosets of the \([32,6]\) first-order RM code.

Cousins

Primary Hierarchy

Parents
\([2^m,m+1,2^{m-1}]\) First-order RM code
Children
The \([8,4,4]\) extended Hamming code is a first-order RM code because it is self-dual and first-order RM codes are dual to extended Hamming codes.

References

[1]
M. Shi, S. Li, T. Helleseth, and J.-L. Kim, “Binary self-orthogonal codes which meet the Griesmer bound or have optimal minimum distances”, (2023) arXiv:2303.16729
[2]
F. J. MacWilliams and N. J. A. Sloane. The theory of error correcting codes. Elsevier, 1977.
[3]
E.C. Posner, Combinatorial Structures in Planetary Reconnaissance in Error Correcting Codes, ed. H.B. Mann, Wiley, NY 1968.
[4]
E. Arikan, “A survey of reed-muller codes from polar coding perspective”, IEEE Information Theory Workshop 2010 (ITW 2010) 1 (2010) DOI
[5]
E. Berlekamp and L. Welch, “Weight distributions of the cosets of the (32,6) Reed-Muller code”, IEEE Transactions on Information Theory 18, 203 (1972) DOI
[6]
G. D. Forney and G. Ungerboeck, “Modulation and coding for linear Gaussian channels”, IEEE Transactions on Information Theory 44, 2384 (1998) DOI
[7]
Forney, G. D. (2003). 6.451 Principles of Digital Communication II, Spring 2003.
[8]
T. Ericson, and V. Zinoviev, eds. Codes on Euclidean spheres. Elsevier, 2001.
[9]
M. An, J. Byrnes, W. Moran, B. Saffari, H. S. Shapiro, and R. Tolimieri, “Pons, Reed-Muller Codes, and Group Algebras”, NATO Science Series II: Mathematics, Physics and Chemistry 155 DOI
[10]
A. M. Steane, “Simple quantum error-correcting codes”, Physical Review A 54, 4741 (1996) arXiv:quant-ph/9605021 DOI
[11]
J. Hu, Q. Liang, and R. Calderbank, “Divisible Codes for Quantum Computation”, (2022) arXiv:2204.13176
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: biorthogonal

Cite as:
\([2^m,m+1,2^{m-1}]\) First-order RM code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2024. https://errorcorrectionzoo.org/c/biorthogonal
BibTeX:
@incollection{eczoo_biorthogonal, title={\([2^m,m+1,2^{m-1}]\) First-order RM code}, booktitle={The Error Correction Zoo}, year={2024}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/biorthogonal} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/biorthogonal

Cite as:

\([2^m,m+1,2^{m-1}]\) First-order RM code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2024. https://errorcorrectionzoo.org/c/biorthogonal

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/classical/bits/reed_muller/biorthogonal.yml.