Levenshtein code[1]
Description
Binary codes constructed from combining two codes \(A'\) constructed out of Hadamard matrices.
Let \(H_n\) be a normalized Hadamard matrix. The generator matrix for an \((n-1,n,n/2)\) code \(A_n\) is obtained by taking \(H_n\), replacing the +1's by 0's and the -1's by 1's, and deleting the first column. Taking only the codewords of \(A_n\) which begin with 0 and deleting the leading 0 yields the generator matrix of an \((n-2,n/2,n/2)\) code \(A_n'\).
Next, apply the following way of combining codes. Suppose we have an \((n_1,M_1,d_1)\) code \(C_1\) and an \((n_2,M_2,d_2)\) code \(C_2\). The combined \((an_1+bn_2,\min(M_1,M_2),ad_1+bd_2)\) code \(a C_1\bigoplus b C_2\) may be constructed by pasting \(a\) copies of \(C_1\) and \(b\) copies of \(C_2\) together and omitting the last \(|M_1-M_2|\) rows. Applying this to construct a Levenshtein code with length \(n\) and distance \(d\), define \(k=\lfloor d/(2d-n)\rfloor\), \(a=d(2k+1)-n(k+1)\), and \(b=kn-d(2k-1)\). If \(n\) is even, construct \(\frac{a}{2}A_{4k}'\bigoplus\frac{b}{2}A_{4k+4}'\). If \(n\) is odd and \(k\) is even, construct \(aA_{2k}\bigoplus\frac{b}{2}A_{4k+4}'\). If \(n\) is odd and \(k\) is odd, construct \(\frac{a}{2}A_{4k}'\bigoplus b A_{2k+2}\).
Protection
Levenshtein codes meet the Plotkin bound \(K\leq 2\left\lfloor\frac{d}{2d-n}\right\rfloor\), where \(K\) is the number of codewords, \(d\) is the distance, and \(n\) is the length, and with the assumption that the Hadamard matrices for such parameters exist. The general proof depends on the correctness of Hadamard's conjecture [2].Cousin
- \([2^m,m+1,2^{m-1}]\) First-order RM code— First-order RM codes and Levenshtein codes are both constructed using Hadamard matrices.
Member of code lists
Primary Hierarchy
References
- [1]
- V.I. Levenshtein, Application of Hadamard matrices to a problem in coding theory, Problems of Cybernetics, vol. 5, GIFML, Moscow, 1961, 125–136.
- [2]
- F. J. MacWilliams and N. J. A. Sloane. The theory of error correcting codes. Elsevier, 1977.
Page edit log
- Victor V. Albert (2022-04-21) — most recent
- Richard Barney (2022-04-05)
Cite as:
“Levenshtein code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/levenshtein