[Jump to code hierarchy]

\([[2^r, 2^r-r-2, 3]]\) Gottesman code[1]

Alternative names: \([[2^r, 2^r-r-2, 3]]\) quantum Hamming code.

Description

A family of non-CSS stabilizer codes of distance \(3\) that saturate the asymptotic quantum Hamming bound.

The family can be obtained from a modified CSS construction [2] with a \([2^r,r+1,2^{r-1}] = C_2^{\perp}\) first-order RM code and a \([2^r,2^r-1,2] = C_1\) even-weight code [2]. The modification introduces signs between the codewords.

Protection

Protects against any single qubit error.

Notes

The code is useful for entanglement distillation [3].

Cousins

References

[1]
D. Gottesman, “Class of quantum error-correcting codes saturating the quantum Hamming bound”, Physical Review A 54, 1862 (1996) arXiv:quant-ph/9604038 DOI
[2]
A. M. Steane, “Simple quantum error-correcting codes”, Physical Review A 54, 4741 (1996) arXiv:quant-ph/9605021 DOI
[3]
C. A. Pattison, G. Baranes, J. P. B. Ataides, M. D. Lukin, and H. Zhou, “Fast quantum interconnects via constant-rate entanglement distillation”, (2024) arXiv:2408.15936
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: quantum_hamming

Cite as:
\([[2^r, 2^r-r-2, 3]]\) Gottesman code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/quantum_hamming
BibTeX:
@incollection{eczoo_quantum_hamming, title={\([[2^r, 2^r-r-2, 3]]\) Gottesman code}, booktitle={The Error Correction Zoo}, year={2022}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/quantum_hamming} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/quantum_hamming

Cite as:

\([[2^r, 2^r-r-2, 3]]\) Gottesman code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/quantum_hamming

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/quantum/qubits/small_distance/quantum_hamming.yml.