Description
Eight-qubit non-degenerate code that can be obtained from a modified CSS construction using the \([8,4,4]\) extended Hamming code and a \([8,7,2]\) even-weight code [3]. The modification introduces signs between the codewords.
See [4; Table 3.3] for its stabilizer generator matrix. The code's automorphism group is \(\text{A}\Gamma\text{L}(1,8)\) [5]. It is unique for its parameters, up to equivalence [6][7; pg. 386].
Transversal Gates
Permutation-based gates [8; Sec. IV.D].No gates outside of the Pauli group were found in Ref. [9].Cousins
- \([8,4,4]\) extended Hamming code— The \([[8, 3, 3]]\) code is obtained via a modified CSS construction from the \([8,4,4]\) extended Hamming code.
- Analog stabilizer code— The eight-qubit Gottesman code has been extended to an analog stabilizer code [10].
- \([[8, 2:1, 3]]\) hybrid stabilizer code— \([[8, 2:1, 3]]\) hybrid stabilizer code is obtained from the \([[8,3,3]]\) Gottesman code by using one of its logical qubits as a classical bit.
Primary Hierarchy
Parents
\([[8, 3, 3]]\) Eight-qubit Gottesman code
References
- [1]
- D. Gottesman, “Class of quantum error-correcting codes saturating the quantum Hamming bound”, Physical Review A 54, 1862 (1996) arXiv:quant-ph/9604038 DOI
- [2]
- A. R. Calderbank, E. M. Rains, P. W. Shor, and N. J. A. Sloane, “Quantum Error Correction and Orthogonal Geometry”, Physical Review Letters 78, 405 (1997) arXiv:quant-ph/9605005 DOI
- [3]
- A. M. Steane, “Simple quantum error-correcting codes”, Physical Review A 54, 4741 (1996) arXiv:quant-ph/9605021 DOI
- [4]
- D. Gottesman, “Stabilizer Codes and Quantum Error Correction”, (1997) arXiv:quant-ph/9705052
- [5]
- H. Hao, “Investigations on Automorphism Groups of Quantum Stabilizer Codes”, (2021) arXiv:2109.12735
- [6]
- S. Yu, Q. Chen, and C. H. Oh, “Graphical Quantum Error-Correcting Codes”, (2007) arXiv:0709.1780
- [7]
- Self-Dual Codes and Invariant Theory (Springer-Verlag, 2006) DOI
- [8]
- M. Grassl and M. Roetteler, “Leveraging automorphisms of quantum codes for fault-tolerant quantum computation”, 2013 IEEE International Symposium on Information Theory (2013) arXiv:1302.1035 DOI
- [9]
- H. Chen, M. Vasmer, N. P. Breuckmann, and E. Grant, “Automated discovery of logical gates for quantum error correction (with Supplementary (153 pages))”, Quantum Information and Computation 22, 947 (2022) arXiv:1912.10063 DOI
- [10]
- R. L. Barnes, “Stabilizer Codes for Continuous-variable Quantum Error Correction”, (2004) arXiv:quant-ph/0405064
Page edit log
- Feroz Ahmad (2024-03-14) — most recent
- Victor V. Albert (2023-11-28)
Cite as:
“\([[8, 3, 3]]\) Eight-qubit Gottesman code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2024. https://errorcorrectionzoo.org/c/stab_8_3_3