Coxeter-Todd \(K_{12}\) lattice code[1] 

Description

Even integral lattice in dimension \(12\) that exhibits optimal packing. It's automorphism group was discovered by Mitchell [2]. For more details, see [4][3; Sec. 4.9].

Protection

The \(K_{12}\) lattice exhibits the densest known lattice packing in 12 dimensions.'

Parent

Cousin

References

[1]
H. S. M. Coxeter and J. A. Todd, “An Extreme Duodenary Form”, Canadian Journal of Mathematics 5, 384 (1953) DOI
[2]
H. H. Mitchell, “Determination of All Primitive Collineation Groups in More than Four Variables which Contain Homologies”, American Journal of Mathematics 36, 1 (1914) DOI
[3]
J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups (Springer New York, 1999) DOI
[4]
J. H. Conway and N. J. A. Sloane, “The Coxeter–Todd lattice, the Mitchell group, and related sphere packings”, Mathematical Proceedings of the Cambridge Philosophical Society 93, 421 (1983) DOI
[5]
T. Ericson, and V. Zinoviev, eds. Codes on Euclidean spheres. Elsevier, 2001.
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: coxeter_todd

Cite as:
“Coxeter-Todd \(K_{12}\) lattice code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/coxeter_todd
BibTeX:
@incollection{eczoo_coxeter_todd, title={Coxeter-Todd \(K_{12}\) lattice code}, booktitle={The Error Correction Zoo}, year={2022}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/coxeter_todd} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/coxeter_todd

Cite as:

“Coxeter-Todd \(K_{12}\) lattice code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/coxeter_todd

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/classical/analog/lattice/coxeter_todd.yml.