Binary quadratic-residue (QR) code 

Description

Member of a quadruple of cyclic binary codes of prime length \(n=8m\pm 1\) for \(m\geq 1\) constructed using quadratic residues and nonresidues of \(n\).

The roots of the generator polynomial \(r(x)\) of the first code (see Cyclic-to-polynomial correspondence) are all of the inequivalent quadratic residues of \(n\), and the second code's generator polynomial is \((x-1)r(x)\). The roots of the generator polynomial \(a(x)\) of the third code are all inequivalent nonresidues of \(n\), and the fourth code's generator polynomial is \((x-1)a(x)\). The codes corresponding to polynomials \(r,a\) are often called augmented quadratic-residue codes, while the remaining codes are called expurgated.

Their automorphism group is either \(PSL(2,GF(p))\) or a closely related group by the Gleason-Prange theorem [1,2].

Decoding

Algebraic decoder [3].

Notes

Introduction of quadratic-residue codes in Refs. [2,4].

Parents

Children

Cousins

References

[1]
R. E. Blahut, “The Gleason-Prange theorem”, IEEE Transactions on Information Theory 37, 1269 (1991) DOI
[2]
F. J. MacWilliams and N. J. A. Sloane. The theory of error correcting codes. Elsevier, 1977.
[3]
Chen, Y. H., Truong, T. K., Chang, Y., Lee, C. D., & Chen, S. H. (2007). Algebraic decoding of quadratic residue codes using Berlekamp-Massey algorithm. Journal of information science and engineering, 23(1), 127-145.
[4]
W. C. Huffman and V. Pless, Fundamentals of Error-Correcting Codes (Cambridge University Press, 2003) DOI
[5]
V. Pless, “Duadic Codes and Generalizations”, Eurocode ’92 3 (1993) DOI
[6]
J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups (Springer New York, 1999) DOI
[7]
J. Conway and N. Sloane, “Lexicographic codes: Error-correcting codes from game theory”, IEEE Transactions on Information Theory 32, 337 (1986) DOI
[8]
N. Sloane and D. Whitehead, “New family of single-error correcting codes”, IEEE Transactions on Information Theory 16, 717 (1970) DOI
[9]
Y. Xie, J. Yuan, and Y. Fujiwara, “Quantum Synchronizable Codes From Quadratic Residue Codes and Their Supercodes”, (2014) arXiv:1403.6192
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: binary_quad_residue

Cite as:
“Binary quadratic-residue (QR) code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/binary_quad_residue
BibTeX:
@incollection{eczoo_binary_quad_residue, title={Binary quadratic-residue (QR) code}, booktitle={The Error Correction Zoo}, year={2022}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/binary_quad_residue} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/binary_quad_residue

Cite as:

“Binary quadratic-residue (QR) code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/binary_quad_residue

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/classical/bits/cyclic/binary_quad_residue.yml.