[Jump to code hierarchy]

\([[2^r+r, 2^r-r-2, 3]]\) Ring CPC code[1]

Description

A family of \([[2^r+r, 2^r-r-2, 3]]\) CPC codes for \(r \geq 3\) whose matrices are based on the shortened version of the \([2^r-1,2^r-r-1,3]\) Hamming code. See [1; Thm. 4] for their stabilizer generator matrix.

Cousin

References

[1]
N. Chancellor, A. Kissinger, S. Zohren, J. Roffe, and D. Horsman, “Graphical structures for design and verification of quantum error correction”, Quantum Science and Technology 8, 045028 (2023) arXiv:1611.08012 DOI
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: ring_cpc

Cite as:
\([[2^r+r, 2^r-r-2, 3]]\) Ring CPC code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2025. https://errorcorrectionzoo.org/c/ring_cpc
BibTeX:
@incollection{eczoo_ring_cpc, title={\([[2^r+r, 2^r-r-2, 3]]\) Ring CPC code}, booktitle={The Error Correction Zoo}, year={2025}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/ring_cpc} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/ring_cpc

Cite as:

\([[2^r+r, 2^r-r-2, 3]]\) Ring CPC code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2025. https://errorcorrectionzoo.org/c/ring_cpc

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/quantum/qubits/small_distance/ring_cpc.yml.