\([[2^r+r, 2^r-r-2, 3]]\) Ring CPC code[1]
Description
A family of \([[2^r+r, 2^r-r-2, 3]]\) CPC codes for \(r \geq 3\) whose matrices are based on the shortened version of the \([2^r-1,2^r-r-1,3]\) Hamming code. See [1; Thm. 4] for their stabilizer generator matrix.Cousin
- \([2^r-1,2^r-r-1,3]\) Hamming code— The ring CPC code is obtained from the shortened Hamming code via the CPC construction [1].
Primary Hierarchy
Parents
Small-distance qubit stabilizer codeStabilizer Hamiltonian-based Qubit Small-distance block quantum QECC Quantum
\([[2^r+r, 2^r-r-2, 3]]\) Ring CPC code
References
- [1]
- N. Chancellor, A. Kissinger, S. Zohren, J. Roffe, and D. Horsman, “Graphical structures for design and verification of quantum error correction”, Quantum Science and Technology 8, 045028 (2023) arXiv:1611.08012 DOI
Page edit log
- Victor V. Albert (2025-01-13) — most recent
Cite as:
“\([[2^r+r, 2^r-r-2, 3]]\) Ring CPC code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2025. https://errorcorrectionzoo.org/c/ring_cpc