[Jump to code hierarchy]

Quantum plane-curve code[1]

Description

Quantum AG code constructed from plane-curve codes via the Galois-qudit Hermitian construction. Code parameters are \([[q^3,q^3+q^2-3q-2r,r+2q-q^2]]_q\), where \(r\) is an integer satisfying \(q^2 - 2 \leq r \leq q^2 + q - 3\), and where the underlying plane curve is \(y^q + y = x^{q-1}\).

Cousins

References

[1]
V. Nourozi, “Reinforcement Learning Enhanced Greedy Decoding for Quantum Stabilizer Codes over \(\mathbb{F}_q\)”, (2025) arXiv:2506.03397
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: quantum_plane_curve

Cite as:
“Quantum plane-curve code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2025. https://errorcorrectionzoo.org/c/quantum_plane_curve
BibTeX:
@incollection{eczoo_quantum_plane_curve, title={Quantum plane-curve code}, booktitle={The Error Correction Zoo}, year={2025}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/quantum_plane_curve} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/quantum_plane_curve

Cite as:

“Quantum plane-curve code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2025. https://errorcorrectionzoo.org/c/quantum_plane_curve

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/quantum/qudits_galois/stabilizer/evaluation/ag/quantum_plane_curve.yml.