[Jump to code hierarchy]

\([[5,1,3]]_{\mathbb{Z}_q}\) modular-qudit code[1,2]

Description

Modular-qudit stabilizer code that generalizes the five-qubit perfect code using properties of the multiplicative group \(\mathbb{Z}_q\) [1]; see also [2; Thm. 13]. It has four stabilizer generators consisting of \(X Z Z^\dagger X^\dagger I\) and its cyclic permutations.

The components of the encoding isometry in the computational basis (with \(a\) being the logical qubit index) are [3; Sec. VI.B] \begin{align} T_{aklmnp}=\delta_{a,k+l+m+n+p}^{\mathbb{Z}_{q}}\frac{1}{q^{2}}\omega^{kl+lm+mn+np+pk}~, \tag*{(1)}\end{align} where \(\omega\) is a primitive \(q\)th root of unity, and where \(\delta^{\mathbb{Z}_{q}}\) is the \(\mathbb{Z}_q\) Kronecker-delta function.

Protection

Protects against a single error on any one qudit. Detects two-qudit errors.

Encoding

Generalized CNOT, Toffoli, and quantum Fourier transform gates.

Cousins

Primary Hierarchy

Parents
The \([[5,1,3]]_{\mathbb{Z}_q}\) code is a perfect-tensor code because it stems from the \([[6,0,4]]_{\mathbb{Z}_q}\) AME state [2; Thm. 13].
The \([[5,1,3]]_{\mathbb{Z}_q}\) code is equivalent via a single-modular-qudit Clifford circuit to a graph quantum code for the group \(G=Z_q\) [4].
\([[5,1,3]]_{\mathbb{Z}_q}\) modular-qudit code
Children
The \([[5,1,3]]_{\mathbb{Z}_q}\) modular-qudit code for \(q=2\) reduces to the five-qubit perfect code.

References

[1]
H. F. Chau, “Five quantum register error correction code for higher spin systems”, Physical Review A 56, R1 (1997) arXiv:quant-ph/9702033 DOI
[2]
E. M. Rains, “Nonbinary quantum codes”, (1997) arXiv:quant-ph/9703048
[3]
P. Faist, S. Nezami, V. V. Albert, G. Salton, F. Pastawski, P. Hayden, and J. Preskill, “Continuous Symmetries and Approximate Quantum Error Correction”, Physical Review X 10, (2020) arXiv:1902.07714 DOI
[4]
D. Schlingemann and R. F. Werner, “Quantum error-correcting codes associated with graphs”, Physical Review A 65, (2001) arXiv:quant-ph/0012111 DOI
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: qudit_5_1_3

Cite as:
\([[5,1,3]]_{\mathbb{Z}_q}\) modular-qudit code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/qudit_5_1_3
BibTeX:
@incollection{eczoo_qudit_5_1_3, title={\([[5,1,3]]_{\mathbb{Z}_q}\) modular-qudit code}, booktitle={The Error Correction Zoo}, year={2022}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/qudit_5_1_3} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/qudit_5_1_3

Cite as:

\([[5,1,3]]_{\mathbb{Z}_q}\) modular-qudit code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/qudit_5_1_3

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/quantum/qudits/small/qudit_5_1_3.yml.