Description
Modular-qudit stabilizer code that generalizes the five-qubit perfect code using properties of the multiplicative group \(\mathbb{Z}_q\) [1]; see also [2; Thm. 13]. It has four stabilizer generators consisting of \(X Z Z^\dagger X^\dagger I\) and its cyclic permutations.
The components of the encoding isometry in the computational basis (with \(a\) being the logical qubit index) are [3; Sec. VI.B] \begin{align} T_{aklmnp}=\delta_{a,k+l+m+n+p}^{\mathbb{Z}_{q}}\frac{1}{q^{2}}\omega^{kl+lm+mn+np+pk}~, \tag*{(1)}\end{align} where \(\omega\) is a primitive \(q\)th root of unity, and where \(\delta^{\mathbb{Z}_{q}}\) is the \(\mathbb{Z}_q\) Kronecker-delta function.
Protection
Encoding
Parents
- Modular-qudit stabilizer code
- Perfect-tensor code — The \([[5,1,3]]_{\mathbb{Z}_q}\) code is a perfect-tensor code because it stems from the \([[6,0,4]]_{\mathbb{Z}_q}\) AME state [2; Thm. 13].
- Graph quantum code — The \([[5,1,3]]_{\mathbb{Z}_q}\) code is equivalent via a single-modular-qudit Clifford circuit to a graph quantum code for the group \(G=Z_q\) [4].
- Cyclic quantum code
- Small-distance block quantum code
Child
- Five-qubit perfect code — The \([[5,1,3]]_{\mathbb{Z}_q}\) modular-qudit code for \(q=2\) reduces to the five-qubit perfect code.
Cousins
- Five-rotor code — The five-rotor code is a rotor analogue of the five-qudit code.
- \([[10,1,4]]_{G}\) tenfold code — The \([[10,1,4]]_{G}\) Abelian group code for \(G=\mathbb{Z}_q\) is defined using a graph that is closely related to the \([[5,1,3]]_{\mathbb{Z}_q}\) modular-qudit code [4].
- \([[5,1,3]]_{\mathbb{R}}\) Braunstein five-mode code — The Braunstein five-mode code is a bosonic analogue of the five-qudit code.
References
- [1]
- H. F. Chau, “Five quantum register error correction code for higher spin systems”, Physical Review A 56, R1 (1997) arXiv:quant-ph/9702033 DOI
- [2]
- E. M. Rains, “Nonbinary quantum codes”, (1997) arXiv:quant-ph/9703048
- [3]
- P. Faist, S. Nezami, V. V. Albert, G. Salton, F. Pastawski, P. Hayden, and J. Preskill, “Continuous Symmetries and Approximate Quantum Error Correction”, Physical Review X 10, (2020) arXiv:1902.07714 DOI
- [4]
- D. Schlingemann and R. F. Werner, “Quantum error-correcting codes associated with graphs”, Physical Review A 65, (2001) arXiv:quant-ph/0012111 DOI
Page edit log
- Sarah Meng Li (2022-02-21) — most recent
- Victor V. Albert (2022-02-21)
- Victor V. Albert (2023-01-14)
Cite as:
“\([[5,1,3]]_{\mathbb{Z}_q}\) modular-qudit code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/qudit_5_1_3