\([[6,1,3]]\) Six-qubit stabilizer code[1] 

Description

One of two six-qubit distance-three codes that are unique up to equivalence [2], with the other code a trivial extension of the five-qubit code [1]. Stabilizer generators and logical Pauli operators are presented in Ref. [1].

Encoding

CNOT and Hadamard gates [1].

Gates

Logical CNOT gate [1].

Parents

Cousins

  • Subsystem qubit stabilizer code — The \([[6,1,3]]\) six-qubit code can be converted into a \([[6,1,1,3]]\) subsystem code that saturates the subsystem Singleton bound [1].
  • Five-qubit perfect code — The \([[6,1,3]]\) six-qubit code is one of two six-qubit distance-three codes that are unique up to equivalence [2], with the other code a trivial extension of the five-qubit code [1].

References

[1]
B. Shaw, M. M. Wilde, O. Oreshkov, I. Kremsky, and D. A. Lidar, “Encoding one logical qubit into six physical qubits”, Physical Review A 78, (2008) arXiv:0803.1495 DOI
[2]
A. R. Calderbank, E. M. Rains, P. W. Shor, and N. J. A. Sloane, “Quantum Error Correction via Codes over GF(4)”, (1997) arXiv:quant-ph/9608006
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: stab_6_1_3

Cite as:
\([[6,1,3]]\) Six-qubit stabilizer code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2024. https://errorcorrectionzoo.org/c/stab_6_1_3
BibTeX:
@incollection{eczoo_stab_6_1_3, title={\([[6,1,3]]\) Six-qubit stabilizer code}, booktitle={The Error Correction Zoo}, year={2024}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/stab_6_1_3} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/stab_6_1_3

Cite as:

\([[6,1,3]]\) Six-qubit stabilizer code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2024. https://errorcorrectionzoo.org/c/stab_6_1_3

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/quantum/qubits/small_distance/small/6/stab_6_1_3.yml.