Description
One of two six-qubit distance-three codes that are unique up to equivalence [1], with the other code a trivial extension of the five-qubit code [2]. The code admits fault-tolerant syndrome extraction using only one ancilla per stabilizer generator measurement.
Stabilizer generators and logical Pauli operators are presented in Ref. [2,3]. The code is equivalent to the cluster state in Ref. [4].
Decoding
Fault-tolerant syndrome extraction using a single ancilla [4].Cousins
- Subsystem qubit stabilizer code— The \([[6,1,3]]\) six-qubit code can be converted into a \([[6,1,1,3]]\) subsystem code that saturates the subsystem Singleton bound [2,3].
- Five-qubit perfect code— The \([[6,1,3]]\) six-qubit code is one of two six-qubit distance-three codes that are unique up to equivalence [1], with the other code a trivial extension of the five-qubit code [2].
Primary Hierarchy
Parents
The \([[6,1,3]]\) six-qubit stabilizer code is the smallest six-qubit-tensor holographic code. The encoding of more general SCF holographic codes is a holographic tensor network consisting of the encoding isometry for the \([[6,1,3]]\) six-qubit stabilizer code.
Small-distance qubit stabilizer codeStabilizer Hamiltonian-based Qubit Small-distance block quantum QECC Quantum
\([[6,1,3]]\) Six-qubit stabilizer code
References
- [1]
- A. R. Calderbank, E. M. Rains, P. W. Shor, and N. J. A. Sloane, “Quantum Error Correction via Codes over GF(4)”, (1997) arXiv:quant-ph/9608006
- [2]
- B. Shaw, M. M. Wilde, O. Oreshkov, I. Kremsky, and D. A. Lidar, “Encoding one logical qubit into six physical qubits”, Physical Review A 78, (2008) arXiv:0803.1495 DOI
- [3]
- B. A. Shaw, “Quantum Steganography and Quantum Error-Correction”, (2010) arXiv:1008.0425
- [4]
- H. Gupta, P. Maheshwari, and A. Raina, “Fault-tolerance of [[6, 1, 3]] non-CSS code family generated using measurements on graph states”, (2025) arXiv:2501.12072
Page edit log
- Victor V. Albert (2024-05-26) — most recent
- Matthew Steinberg (2024-05-26)
Cite as:
“\([[6,1,3]]\) Six-qubit stabilizer code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2024. https://errorcorrectionzoo.org/c/stab_6_1_3