[Jump to code hierarchy]

Analog repetition code[1]

Alternative names: Gaussian repetition code, Einstein-Podolsky-Rosen (EPR) repetition code.

Description

An \([[n,1]]_{\marhbb{R}}\) analog stabilizer version of the quantum repetition code, encoding the position states of one mode into an odd number of \(n\) modes.

There are two variants, a bit- and a phase-flip code, whose encoding for \(n=3\) is \begin{align} |\overline{x}_{\text{bit}}\rangle&\rightarrow|x,x,x\rangle\tag*{(1)}\\ |\overline{x}_{\text{phase}}\rangle&\rightarrow \int dx_{1}dx_{2}dx_{3}\delta(x_{1}+x_{2}+x_{3}-x)|x_{1},x_{2},x_{3}\rangle~. \tag*{(2)}\end{align}

Nullifiers for the bit-flip analog repetition code are differences \(\hat{x}_{j+1} - \hat{x}_{j}\). Bit-flip codewords can be superposed to yield the logical momentum basis \begin{align} |\overline{p}\rangle=\int dx e^{ipx}|x\rangle^{\otimes n}~, \tag*{(3)}\end{align} a bosonic analogue of GHZ states. At \(p=0\), the above is an analog stabilizer state nullified by the bit-flip nullifiers and the total momentum operator \(\hat{p}_1+\hat{p}_2+\cdots+\hat{p}_n\). For \(n=2\), this state is known as an EPR pair [1], an infinitely squeezed version of the two-mode squeezed (TMS) a.k.a. twin-beam state.

Realizations

EPR states and their associated quantum teleportation protocols have been realized [2].

Notes

EPR states and their \(n\)-mode extensions are useful for quantum teleportation [3].

References

[1]
A. Einstein, B. Podolsky, and N. Rosen, “Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?”, Physical Review 47, 777 (1935) DOI
[2]
H. Yonezawa, T. Aoki, and A. Furusawa, “Demonstration of a quantum teleportation network for continuous variables”, Nature 431, 430 (2004) DOI
[3]
P. van Loock and S. L. Braunstein, “Multipartite Entanglement for Continuous Variables: A Quantum Teleportation Network”, Physical Review Letters 84, 3482 (2000) arXiv:quant-ph/9906021 DOI
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: analog_repetition

Cite as:
“Analog repetition code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2025. https://errorcorrectionzoo.org/c/analog_repetition
BibTeX:
@incollection{eczoo_analog_repetition, title={Analog repetition code}, booktitle={The Error Correction Zoo}, year={2025}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/analog_repetition} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/analog_repetition

Cite as:

“Analog repetition code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2025. https://errorcorrectionzoo.org/c/analog_repetition

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/quantum/oscillators/stabilizer/hyperplane/analog_repetition.yml.