[Jump to code hierarchy]

Group-based quantum repetition code[1]

Description

An \([[n,1]]_G\) generalization of the quantum repetition code.

The code encodes one group-valued qudit into \(n\). There are two variants, a bit- and a phase-flip code, whose codewords for any \(g\in G\) and for \(n=3\) are \begin{align} |\overline{g}_{\text{bit}}\rangle&\rightarrow|g,g,g\rangle\tag*{(1)}\\ |\overline{g}_{\text{phase}}\rangle&\rightarrow\frac{1}{|G|}\sum_{h_{1},h_{2},h_{3}\in G}\delta^{G}_{g,h_{1}h_{2}h_{3}}|h_{1},h_{2},h_{3}\rangle~, \tag*{(2)}\end{align} where \(\delta^{G}_{g,h}\) is the group Kronecker-delta function. For non-compact groups, the sum becomes an integral, and ideal codewords are no longer normalizable.

Cousin

Primary Hierarchy

Parents
A \([[m_1 m_2,1,\min(m_1,m_2)]]_G\) group-based QPC reduces to a group-based quantum repetition code when \(m_1\) or \(m_2\) is one.
Group-based quantum repetition code
Children
Group-based quantum repetition codes reduce to analog repetition codes for \(G = \mathbb{R}\).
Group-based quantum repetition codes reduce to quantum repetition codes for \(G = \mathbb{Z}_2\).

References

[1]
P. Faist, S. Nezami, V. V. Albert, G. Salton, F. Pastawski, P. Hayden, and J. Preskill, “Continuous Symmetries and Approximate Quantum Error Correction”, Physical Review X 10, (2020) arXiv:1902.07714 DOI
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: group_quantum_repetition

Cite as:
“Group-based quantum repetition code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2024. https://errorcorrectionzoo.org/c/group_quantum_repetition
BibTeX:
@incollection{eczoo_group_quantum_repetition, title={Group-based quantum repetition code}, booktitle={The Error Correction Zoo}, year={2024}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/group_quantum_repetition} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/group_quantum_repetition

Cite as:

“Group-based quantum repetition code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2024. https://errorcorrectionzoo.org/c/group_quantum_repetition

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/quantum/groups/small/group_quantum_repetition.yml.