\(\mathbb{Z}^n\) hypercubic lattice code 

Description

Lattice-based code consisting of all integer vectors in \(n\) dimensions. Its generator matrix is the \(n\)-dimensional identity matrix. Its automorphism group consists of all coordinate permutations and sign changes.

Protection

The \(\mathbb{Z}\) integer lattice solves the lattice quantization problem in one dimension with a second moment of \(G_1 = 1/12\). The lattice has determinant 1, kissing number \(2n\), packing radius \(1/2\), covering radius \(\sqrt{n}/2\), and density \(V_{n}/\sqrt{2^{n}(n+1)}\) (with \(V_n\) the volume of the unit \(n\)-sphere).

Parents

Cousins

References

[1]
T. Ericson, and V. Zinoviev, eds. Codes on Euclidean spheres. Elsevier, 2001.
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)

edit on this site

Zoo Code ID: hypercubic

Cite as:
\(\mathbb{Z}^n\) hypercubic lattice code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/hypercubic
BibTeX:
@incollection{eczoo_hypercubic,
  title={\(\mathbb{Z}^n\) hypercubic lattice code},
  booktitle={The Error Correction Zoo},
  year={2022},
  editor={Albert, Victor V. and Faist, Philippe},
  url={https://errorcorrectionzoo.org/c/hypercubic}
}
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/hypercubic

Cite as:

\(\mathbb{Z}^n\) hypercubic lattice code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/hypercubic

Github: https://github.com/errorcorrectionzoo/eczoo_data/tree/main/codes/classical/analog/lattice/root/hypercubic.yml.