\(\mathbb{Z}^n\) hypercubic lattice code 

Description

Lattice-based code consisting of all integer vectors in \(n\) dimensions. Its generator matrix is the \(n\)-dimensional identity matrix. Its automorphism group consists of all coordinate permutations and sign changes.

Protection

The \(\mathbb{Z}\) integer lattice solves the lattice quantization problem in one dimension with a second moment of \(G_1 = 1/12\). The lattice has determinant 1, kissing number \(2n\), packing radius \(1/2\), covering radius \(\sqrt{n}/2\), and density \(V_{n}/\sqrt{2^{n}(n+1)}\) (with \(V_n\) the volume of the unit \(n\)-sphere).

Parents

Cousins

  • Barnes-Wall (BW) lattice code — The hypercubic lattice is the \(m=1\) BW lattice.
  • Lattice-based code — The generator matrix of a lattice-based code serves as a linear transformation that can be applied to the hypercubic lattice to obtain said code [1; Ch. 10].
  • Biorthogonal spherical code — Biorthogonal spherical codewords form the minimal shell of the \(\mathbb{Z}^n\) hypercubic lattice.
  • Hypercube code — Hypercube codewords form the minimal lattice shell code of the \(\mathbb{Z}^n\) hypercubic lattice when the lattice is shifted such that the center of a hypercube is at the origin.
  • Square-lattice GKP code — GKP codewords, when written in terms of coherent states, form a square lattice in phase space.
  • Square-octagon (4.8.8) color code — The 4.8.8 (square-octagon) tiling is obtained by applying a fattening procedure to the honeycomb lattice [2].

References

[1]
T. Ericson, and V. Zinoviev, eds. Codes on Euclidean spheres. Elsevier, 2001.
[2]
H. Bombin and M. A. Martin-Delgado, “Exact topological quantum order inD=3and beyond: Branyons and brane-net condensates”, Physical Review B 75, (2007) arXiv:cond-mat/0607736 DOI
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: hypercubic

Cite as:
\(\mathbb{Z}^n\) hypercubic lattice code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/hypercubic
BibTeX:
@incollection{eczoo_hypercubic, title={\(\mathbb{Z}^n\) hypercubic lattice code}, booktitle={The Error Correction Zoo}, year={2022}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/hypercubic} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/hypercubic

Cite as:

\(\mathbb{Z}^n\) hypercubic lattice code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/hypercubic

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/classical/analog/lattice/root/hypercubic.yml.