[Jump to code hierarchy]

Root lattice

Description

A lattice that is symmetric under a specific crystallographic reflection group; see [1; Table 4.1] for the list of crystallographic reflection groups and their corresponding root lattices. The root-lattice family consists of lattices \(A_n\), \(\mathbb{Z}^n\), or \(D_n\) for dimension \(n\), or \(E_{i}\) for \(i\in\{6,7,8\}\). Their generator matrices can be taken to be the root matrices of the corresponding reflection groups.

Protection

The densest lattice packings in dimensions \(3\) through \(8\) are root lattices [1; Table 1.1].

Member of code lists

References

[1]
J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups (Springer New York, 1999) DOI
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: root

Cite as:
“Root lattice”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/root
BibTeX:
@incollection{eczoo_root, title={Root lattice}, booktitle={The Error Correction Zoo}, year={2022}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/root} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/root

Cite as:

“Root lattice”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/root

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/classical/analog/lattice/root/root.yml.