Description
Lattice in dimension \(7\).
Protection
Parents
- Root lattice code
- Construction-\(A\) code — The \([7,4,3]\) Hamming code yields the \(E_7^{\perp}\) root lattice code via Construction A [6]. The \([7,3,4]\) little Hamming code yields the \(E_7\) root lattice code via the same construction [6][7; Ex. 10.5.3].
Cousins
- \([7,4,3]\) Hamming code — The \([7,4,3]\) Hamming code yields the \(E_7^{\perp}\) root lattice code via Construction A [6]. The \([7,3,4]\) little Hamming code yields the \(E_7\) root lattice code via the same construction [6][7; Ex. 10.5.3].
- \(E_7\) lattice-shell code
References
- [1]
- Blichfeldt, H. F. "On the minimum value of positive real quadratic forms in 6 variables." Bulletin of American Math. Soc 31 (1925): 386.
- [2]
- H. F. Blichfeldt, “The minimum value of quadratic forms, and the closest packing of spheres”, Mathematische Annalen 101, 605 (1929) DOI
- [3]
- H. F. Blichfeldt, “The minimum values of positive quadratic forms in six, seven and eight variables”, Mathematische Zeitschrift 39, 1 (1935) DOI
- [4]
- G. L. Watson, “The Class-Number of a Positive Quadratic Form”, Proceedings of the London Mathematical Society s3-13, 549 (1963) DOI
- [5]
- Vetchinkin, N. M. "Uniqueness of classes of positive quadratic and highest known kissing number in seven dimensions."
- [6]
- J. H. Conway and N. J. A. Sloane, “On the Voronoi Regions of Certain Lattices”, SIAM Journal on Algebraic Discrete Methods 5, 294 (1984) DOI
- [7]
- T. Ericson, and V. Zinoviev, eds. Codes on Euclidean spheres. Elsevier, 2001.
Page edit log
- Victor V. Albert (2022-12-12) — most recent
Cite as:
“\(E_7\) root lattice code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/eseven