\(E_7\) root lattice code 

Description

Lattice in dimension \(7\).

Protection

The \(E_7\) root lattice exhibits the densest lattice packing [15].

Parents

Cousins

References

[1]
Blichfeldt, H. F. "On the minimum value of positive real quadratic forms in 6 variables." Bulletin of American Math. Soc 31 (1925): 386.
[2]
H. F. Blichfeldt, “The minimum value of quadratic forms, and the closest packing of spheres”, Mathematische Annalen 101, 605 (1929) DOI
[3]
H. F. Blichfeldt, “The minimum values of positive quadratic forms in six, seven and eight variables”, Mathematische Zeitschrift 39, 1 (1935) DOI
[4]
G. L. Watson, “The Class-Number of a Positive Quadratic Form”, Proceedings of the London Mathematical Society s3-13, 549 (1963) DOI
[5]
Vetchinkin, N. M. "Uniqueness of classes of positive quadratic and highest known kissing number in seven dimensions."
[6]
J. H. Conway and N. J. A. Sloane, “On the Voronoi Regions of Certain Lattices”, SIAM Journal on Algebraic Discrete Methods 5, 294 (1984) DOI
[7]
T. Ericson, and V. Zinoviev, eds. Codes on Euclidean spheres. Elsevier, 2001.
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: eseven

Cite as:
\(E_7\) root lattice code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/eseven
BibTeX:
@incollection{eczoo_eseven, title={\(E_7\) root lattice code}, booktitle={The Error Correction Zoo}, year={2022}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/eseven} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/eseven

Cite as:

\(E_7\) root lattice code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/eseven

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/classical/analog/lattice/root/eseven.yml.