Description
Lattice in dimension \(6\).
Protection
The root \(E_6\) lattice exhibits the densest lattice packing [1–5] and highest known kissing number in six dimensions.
Parent
Cousins
- \(q\)-ary repetition code — The \([3,1,3]_3\) ternary repetition code can be used to obtain the \(E_6\) root lattice code [6; Ex. 10.5.4].
- \(E_6\) lattice-shell code
- Hessian polyhedron code — The 27 Hessian polyhedron codewords are intimately related to the \(E_6\) Lie group [7].
References
- [1]
- Blichfeldt, H. F. "On the minimum value of positive real quadratic forms in 6 variables." Bulletin of American Math. Soc 31 (1925): 386.
- [2]
- H. F. Blichfeldt, “The minimum value of quadratic forms, and the closest packing of spheres”, Mathematische Annalen 101, 605 (1929) DOI
- [3]
- H. F. Blichfeldt, “The minimum values of positive quadratic forms in six, seven and eight variables”, Mathematische Zeitschrift 39, 1 (1935) DOI
- [4]
- G. L. Watson, “The Class-Number of a Positive Quadratic Form”, Proceedings of the London Mathematical Society s3-13, 549 (1963) DOI
- [5]
- Vetchinkin, N. M. "Uniqueness of classes of positive quadratic forms, on which values of Hermite constants are reached for 6≤n≤8." Trudy Matematicheskogo Instituta imeni VA Steklova 152 (1980): 34-86.
- [6]
- T. Ericson, and V. Zinoviev, eds. Codes on Euclidean spheres. Elsevier, 2001.
- [7]
- L. Manivel, “Configurations of lines and models of Lie algebras”, (2005) arXiv:math/0507118
Page edit log
- Victor V. Albert (2022-11-29) — most recent
Cite as:
“\(E_6\) root lattice code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/esix