Description
An \([n,1,n]_q\) code encoding consisting of codewords \((j,j,\cdots,j)\) for \(j \in \mathbb{F}_q\). The length \(n\) needs to be an odd number, since the receiver will pick the majority to recover the information.Protection
Detects errors on up to \(\frac{n-1}{2}\) coordinates, corrects erasure errors on up to \(\frac{n-1}{2}\) coordinates.Cousins
- Repetition code
- \(E_6\) root lattice— The \([3,1,3]_3\) ternary repetition code can be used to obtain the \(E_6\) root lattice [1; Exam. 10.5.4].
Primary Hierarchy
Parents
The \(q\)-ary repetition code is cyclic with generator polynomial \(1+x+\cdots+x^{n-1}\).
The \(q\)-ary repetition code is a \(q\)-ary sharp configuration [2; Table 12.1].
\(q\)-ary repetition code
References
- [1]
- T. Ericson, and V. Zinoviev, eds. Codes on Euclidean spheres. Elsevier, 2001.
- [2]
- P. Boyvalenkov, D. Danev, “Linear programming bounds.” Concise Encyclopedia of Coding Theory (Chapman and Hall/CRC, 2021) DOI
Page edit log
- Victor V. Albert (2022-12-12) — most recent
Cite as:
“\(q\)-ary repetition code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/q-ary_repetition