Description
An \([n,1,n]_q\) code encoding consisting of codewords \((j,j,\cdots,j)\) for \(j \in GF(q)\). The length \(n\) needs to be an odd number, since the receiver will pick the majority to recover the information.Protection
Detects errors on up to \(\frac{n-1}{2}\) coordinates, corrects erasure errors on up to \(\frac{n-1}{2}\) coordinates.Cousins
- Repetition code
- \(E_6\) root lattice— The \([3,1,3]_3\) ternary repetition code can be used to obtain the \(E_6\) root lattice [1; Exam. 10.5.4].
Primary Hierarchy
Parents
The \(q\)-ary repetition code is cyclic with generator polynomial \(1+x+\cdots+x^{n-1}\).
The \(q\)-ary repetition code is a \(q\)-ary sharp configuration [2; Table 12.1].
\(q\)-ary repetition code
References
- [1]
- T. Ericson, and V. Zinoviev, eds. Codes on Euclidean spheres. Elsevier, 2001.
- [2]
- P. Boyvalenkov, D. Danev, "Linear programming bounds." Concise Encyclopedia of Coding Theory (Chapman and Hall/CRC, 2021) DOI
Page edit log
- Victor V. Albert (2022-12-12) — most recent
Cite as:
“\(q\)-ary repetition code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/q-ary_repetition