Modular-qudit shift-resistant code[1]
Description
Monolithic code encoding a qubit into a single modular qudit and protecting against either \(Z\)-type or \(X\)-type modular-qudit Pauli shifts.
The simplest example requires a 6-dimensional qudit. The bit-flip version admits codewords \(|0\rangle\) and \(|3\rangle\) and corrects a single \(X\)-type shift. The phase-flip version admits codewords \begin{align} \begin{split} |\overline{0}\rangle&=\frac{1}{\sqrt{6}}\sum_{j=0}^{5}|j\rangle\\|\overline{1}\rangle&=\frac{1}{\sqrt{6}}\sum_{j=0}^{5}(-1)^{j}|j\rangle\,. \end{split} \tag*{(1)}\end{align} Both codes are modular-qudit CSS codes with stabilizer generators \(Z^2\) and \(X^2\), respectively.
Cousins
- Modular-qudit GKP code— The modular-qudit shift-resistant code requires a smaller physical qudit dimension but protects against only one type of error [1].
- Perfect quantum code— The modular-qudit shift-resistant code is not a block code, but it is perfect in the sense that each correctable error maps the logical space into a distinct error space [1].
- Quantum repetition code— Both the quantum repetition and modular-qudit shift-resistant codes protect against only one type of noise.
Primary Hierarchy
References
- [1]
- S. Pirandola, S. Mancini, S. L. Braunstein, and D. Vitali, “Minimal qudit code for a qubit in the phase-damping channel”, Physical Review A 77, (2008) arXiv:0705.1099 DOI
Page edit log
- Victor V. Albert (2025-01-07) — most recent
Cite as:
“Modular-qudit shift-resistant code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2025. https://errorcorrectionzoo.org/c/qudit_sign