Quantum twisted code[1]
Description
Hermitian code arising constructed from twisted BCH codes.
Notes
Tables of quantum twisted codes are available at Yves Edel's home page.
Parent
Cousins
- Perfect quantum code — The \([[\frac{q^{2r}-1}{q^{2}-1},q^{n-2r},3]]\) family of quantum twisted codes are the only perfect Galois-qudit codes [1,2].
- Twisted BCH code
References
- [1]
- J. Bierbrauer and Y. Edel, “Quantum twisted codes”, Journal of Combinatorial Designs 8, 174 (2000) DOI
- [2]
- Z. Li and L. Xing, “No More Perfect Codes: Classification of Perfect Quantum Codes”, (2009) arXiv:0907.0049
Page edit log
- Victor V. Albert (2024-01-09) — most recent
Cite as:
“Quantum twisted code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2024. https://errorcorrectionzoo.org/c/quantum_twisted