PSK c-q code[1] 

Description

Coherent-state c-q \(q\)-ary code whose \(j\)th codeword corresponds to a coherent state whose phase is the \(j\)th multiple of \(2\pi/q\). These states are also called geometrically uniform states (GUS) [2].

Protection

The error probability for \(q=4\) under an optimal quantum detector is worked out in [3; Sec. IV.3]; see also [2,4,5].

Decoding

Multi-stage quantum receivers [611].Bayesian inference [12].

Realizations

Unambiguous state discrimination using displacement-based receiver for 4-PSK [13].Multi-stage quantum receivers [1,1416].Bayesian inference [17].Time resolving quantum receiver opertaing in the telecom C band [18].Displacements and photon detection [19].Adaptive decoder using linear-optical elements and photon detection [20].

Parent

  • Coherent FSK (CFSK) c-q code — The CFSK c-q code reduces to the \(q\)-ary PSK c-q code when \(\Delta\omega = 0\) and \(\Delta\theta = 2\pi/q\).

Child

Cousins

  • Phase-shift keying (PSK) code — PSK (PSK c-q) codes are used to transmit classical information using single-mode coherent states distributed on a circle over classical (quantum) channels.
  • Cat code — PSK c-q (cat) codes are used to transmit classical (quantum) information using (superpositions of) single-mode coherent states distributed on a circle over quantum channels.
  • Polygon code — The PSK coherent-state constellation forms the vertices of a \(q\)-gon.

References

[1]
F. E. Becerra, J. Fan, and A. Migdall, “Photon number resolution enables quantum receiver for realistic coherent optical communications”, Nature Photonics 9, 48 (2014) DOI
[2]
Y. C. Eldar and G. D. Forney, “On quantum detection and the square-root measurement”, IEEE Transactions on Information Theory 47, 858 (2001) DOI
[3]
Carl W. Helstrom. Quantum Detection and Estimation Theory. Elsevier, 1976.
[4]
K. Kato et al., “Quantum detection and mutual information for QAM and PSK signals”, IEEE Transactions on Communications 47, 248 (1999) DOI
[5]
G. Cariolaro, R. Corvaja, and G. Pierobon, “Gaussian states and geometrically uniform symmetry”, Physical Review A 90, (2014) arXiv:1410.5282 DOI
[6]
M. Takeoka et al., “Implementation of projective measurements with linear optics and continuous photon counting”, Physical Review A 71, (2005) arXiv:quant-ph/0410133 DOI
[7]
F. E. Becerra et al., “M-ary-state phase-shift-keying discrimination below the homodyne limit”, Physical Review A 84, (2011) DOI
[8]
C. Wittmann, U. L. Andersen, and G. Leuchs, “Discrimination of optical coherent states using a photon number resolving detector”, Journal of Modern Optics 57, 213 (2010) arXiv:0905.2496 DOI
[9]
S. Izumi et al., “Displacement receiver for phase-shift-keyed coherent states”, Physical Review A 86, (2012) arXiv:1208.1815 DOI
[10]
S. Izumi et al., “Quantum receivers with squeezing and photon-number-resolving detectors forM-ary coherent state discrimination”, Physical Review A 87, (2013) arXiv:1302.2691 DOI
[11]
K. Li, Y. Zuo, and B. Zhu, “Suppressing the Errors Due to Mode Mismatch for \(M\)-Ary PSK Quantum Receivers Using Photon-Number-Resolving Detector”, IEEE Photonics Technology Letters 25, 2182 (2013) arXiv:1304.7316 DOI
[12]
I. A. Burenkov, O. V. Tikhonova, and S. V. Polyakov, “Quantum receiver for large alphabet communication”, Optica 5, 227 (2018) arXiv:1802.08287 DOI
[13]
F. E. Becerra, J. Fan, and A. Migdall, “Implementation of generalized quantum measurements for unambiguous discrimination of multiple non-orthogonal coherent states”, Nature Communications 4, (2013) DOI
[14]
F. E. Becerra et al., “Experimental demonstration of a receiver beating the standard quantum limit for multiple nonorthogonal state discrimination”, Nature Photonics 7, 147 (2013) DOI
[15]
S. Izumi et al., “Experimental Demonstration of a Quantum Receiver Beating the Standard Quantum Limit at Telecom Wavelength”, Physical Review Applied 13, (2020) arXiv:2001.05902 DOI
[16]
A. R. Ferdinand, M. T. DiMario, and F. E. Becerra, “Multi-state discrimination below the quantum noise limit at the single-photon level”, npj Quantum Information 3, (2017) arXiv:1711.00074 DOI
[17]
I. A. Burenkov et al., “Experimental demonstration of time resolving quantum receiver for bandwidth and power efficient communications”, Conference on Lasers and Electro-Optics (2020) DOI
[18]
M. V. Jabir et al., “Versatile quantum-enabled telecom receiver”, AVS Quantum Science 5, (2023) DOI
[19]
S. Izumi, J. S. Neergaard-Nielsen, and U. L. Andersen, “Adaptive Generalized Measurement for Unambiguous State Discrimination of Quaternary Phase-Shift-Keying Coherent States”, PRX Quantum 2, (2021) arXiv:2009.02558 DOI
[20]
M. T. DiMario and F. E. Becerra, “Demonstration of optimal non-projective measurement of binary coherent states with photon counting”, npj Quantum Information 8, (2022) arXiv:2207.12234 DOI
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: quantum_psk

Cite as:
“PSK c-q code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/quantum_psk
BibTeX:
@incollection{eczoo_quantum_psk, title={PSK c-q code}, booktitle={The Error Correction Zoo}, year={2022}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/quantum_psk} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/quantum_psk

Cite as:

“PSK c-q code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/quantum_psk

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/classical_into_quantum/oscillators/coherent_state/psk/quantum_psk.yml.