[Jump to code hierarchy]

BPSK c-q code

Description

Coherent-state c-q binary code encoding into two coherent states \(|\pm\alpha\rangle\) for complex \(\alpha\). A shifted version, with codewords \(\{|0\rangle,|\alpha\rangle\}\), is called binary amplitude modulation (BAM), The three-state subcode \(\{|\alpha,\alpha\rangle,|-\alpha,\alpha\rangle,|\alpha,-\alpha\rangle\}\) of two-mode BPSK is called the single-degeneracy code [1].

Rate

The single-degeneracy code yields an improved PIE by \(2.8\%\) over BPSK [2] (see [1]).

Decoding

Linear-optical quantum receiver [3].Kennedy receiver [4,5].Photon-number resolving detector [6].Non-Gaussian near-optimal receiver [5].Multi-stage quantum receiver [7].Quantum receiver attaining the Helstrom bound in the low-photon regime [8].

Realizations

Linear-optical quantum receiver [3].Homodyne receiver [9].Kennedy receiver [9,10].Photon-number resolving detector [6].Communication over dephasing [11], time-varying phase-noise [12], and thermal-noise [13] channels.Adaptive decoder using displacements and photon detection [14].BPQM detector on a BPSK-modulated tree code [15].

Cousins

  • Binary PSK (BPSK) code— BPSK (BPSK c-q) codes are used to transmit classical information using antipodal coherent states over classical (quantum) channels.
  • Two-component cat code— BPSK c-q (two-component cat) codes are used to transmit classical (quantum) information using (superpositions of) antipodal coherent states over quantum channels.
  • On-off keyed (OOK) c-q code— OOK c-q codewords are related to BPSK c-q codewords by a displacement in phase space.

References

[1]
S. Guha, “Structured Optical Receivers to Attain Superadditive Capacity and the Holevo Limit”, Physical Review Letters 106, (2011) arXiv:1101.1550 DOI
[2]
J. R. Buck, S. J. van Enk, and C. A. Fuchs, “Experimental proposal for achieving superadditive communication capacities with a binary quantum alphabet”, Physical Review A 61, (2000) DOI
[3]
K. Tsujino, D. Fukuda, G. Fujii, S. Inoue, M. Fujiwara, M. Takeoka, and M. Sasaki, “Quantum Receiver beyond the Standard Quantum Limit of Coherent Optical Communication”, Physical Review Letters 106, (2011) arXiv:1103.5592 DOI
[4]
Kennedy, Robert S. "A near-optimum receiver for the binary coherent state quantum channel." Quarterly Progress Report 108 (1973): 219-225.
[5]
M. Takeoka and M. Sasaki, “Discrimination of the binary coherent signal: Gaussian-operation limit and simple non-Gaussian near-optimal receivers”, Physical Review A 78, (2008) arXiv:0706.1038 DOI
[6]
M. T. DiMario and F. E. Becerra, “Robust Measurement for the Discrimination of Binary Coherent States”, Physical Review Letters 121, (2018) arXiv:1807.05199 DOI
[7]
D. Sych and G. Leuchs, “Practical Receiver for Optimal Discrimination of Binary Coherent Signals”, Physical Review Letters 117, (2016) arXiv:1404.5033 DOI
[8]
A. Warke, J. Nötzel, K. Takase, W. Asavanant, H. Nagayoshi, K. Fukui, S. Takeda, A. Furusawa, and P. van Loock, “Photonic Quantum Receiver Attaining the Helstrom Bound”, (2024) arXiv:2410.21800
[9]
C. Wittmann, M. Takeoka, K. N. Cassemiro, M. Sasaki, G. Leuchs, and U. L. Andersen, “Demonstration of Near-Optimal Discrimination of Optical Coherent States”, Physical Review Letters 101, (2008) arXiv:0809.4953 DOI
[10]
M. L. Shcherbatenko, M. S. Elezov, G. N. Goltsman, and D. V. Sych, “Sub-shot-noise-limited fiber-optic quantum receiver”, Physical Review A 101, (2020) arXiv:1911.08932 DOI
[11]
M. T. DiMario, L. Kunz, K. Banaszek, and F. E. Becerra, “Optimized communication strategies with binary coherent states over phase noise channels”, npj Quantum Information 5, (2019) arXiv:1907.12515 DOI
[12]
M. T. DiMario and F. E. Becerra, “Phase tracking for sub-shot-noise-limited receivers”, Physical Review Research 2, (2020) DOI
[13]
R. Yuan, M. Zhao, S. Han, and J. Cheng, “Optimally Displaced Threshold Detection for Discriminating Binary Coherent States Using Imperfect Devices”, (2020) arXiv:2007.11109
[14]
M. T. DiMario and F. E. Becerra, “Demonstration of optimal non-projective measurement of binary coherent states with photon counting”, npj Quantum Information 8, (2022) arXiv:2207.12234 DOI
[15]
C. Delaney, K. P. Seshadreesan, I. MacCormack, A. Galda, S. Guha, and P. Narang, “Demonstration of a quantum advantage by a joint detection receiver for optical communication using quantum belief propagation on a trapped-ion device”, Physical Review A 106, (2022) arXiv:2102.13052 DOI
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: quantum_bpsk

Cite as:
“BPSK c-q code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2023. https://errorcorrectionzoo.org/c/quantum_bpsk
BibTeX:
@incollection{eczoo_quantum_bpsk, title={BPSK c-q code}, booktitle={The Error Correction Zoo}, year={2023}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/quantum_bpsk} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/quantum_bpsk

Cite as:

“BPSK c-q code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2023. https://errorcorrectionzoo.org/c/quantum_bpsk

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/classical_into_quantum/oscillators/coherent_state/psk/quantum_bpsk.yml.