[Jump to code hierarchy]

Group-alphabet code

Root code for the Group Kingdom

Description

Encodes \(K\) states (codewords) in coordinates labeled by elements of a group \(G\). The number of codewords may be infinite for infinite groups, so various restricted versions have to be constructed in practice.

Cousins

Member of code lists

Primary Hierarchy

Parents
Homogeneous spaces \(G/H\) for trivial \(H\) reduce to group spaces. A group-\(G\) space can also be thought of as a multiplicity-free homogeneous space \((G\times G) / G\) [2; pg. 60].
Group-alphabet code
Children
Analog code alphabets, \(\mathbb{R}^n\) or \(\mathbb{C}^n\), are infinite fields, which are groups under addition.
Codes in permutations are group-alphabet codes for the symmetric group \(G=S_n\).

References

[1]
M. Berger, A Panoramic View of Riemannian Geometry (Springer Berlin Heidelberg, 2003) DOI
[2]
Diaconis, Persi. “Group representations in probability and statistics.” Lecture notes-monograph series 11 (1988): i-192.
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: group_classical

Cite as:
“Group-alphabet code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/group_classical
BibTeX:
@incollection{eczoo_group_classical, title={Group-alphabet code}, booktitle={The Error Correction Zoo}, year={2022}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/group_classical} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/group_classical

Cite as:

“Group-alphabet code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/group_classical

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/classical/groups/group_classical.yml.