[Jump to code hierarchy]

Galois-qudit expander code[1]

Alternative names: Galois-qudit Sipser-Spielman code.

Description

Galois-qudit CSS code constructed from a hypergraph product of expander codes.

Expander codes with RS inner codes contain GRM codewords because tensor products of univariate polynomials (corresponding to RS codewords) yield multivariate polynomials (corresponding to GRM codewords) [1]. This multiplication property allows for QLDPC Galois-qudit quantum expander codes with transversal \(C^{r-1} Z\) gates while maintaining distance [1].

Magic

Hypergraph products of expander codes with RS inner codes yield \([[n,k\geq n^{1-\epsilon},d\geq n^{1/r}/\text{poly}(\log n)]]_q\) QLDPC Galois-qudit quantum expander codes with transversal \(C^{r-1} Z\) gates [1]. This construction allows for arbitrarily small magic-state yield parameter \(\gamma\).

Transversal Gates

Hypergraph products of expander codes with RS inner codes yield \([[n,k\geq n^{1-\epsilon},d\geq n^{1/r}/\text{poly}(\log n)]]_q\) QLDPC Galois-qudit quantum expander codes with transversal \(C^{r-1} Z\) gates [1].

Cousins

  • Reed-Solomon (RS) code— Hypergraph products of expander codes with RS inner codes yield \([[n,k\geq n^{1-\epsilon},d\geq n^{1/r}/\text{poly}(\log n)]]_q\) QLDPC Galois-qudit quantum expander codes with transversal \(C^{r-1} Z\) gates [1]. Balanced products of expander codes with RS inner codes yield \([q^{\text{polylog}(q)},k\geq n^{1-\epsilon},n/\text{poly}(\log n)]_q\) LTCs exhibiting the multiplication property [1].
  • Expander code— Hypergraph products of expander codes with RS inner codes yield \([[n,k\geq n^{1-\epsilon},d\geq n^{1/r}/\text{poly}(\log n)]]_q\) QLDPC Galois-qudit quantum expander codes with transversal \(C^{r-1} Z\) gates [1]. Balanced products of expander codes with RS inner codes yield \([q^{\text{polylog}(q)},k\geq n^{1-\epsilon},n/\text{poly}(\log n)]_q\) LTCs exhibiting the multiplication property [1].
  • Generalized RM (GRM) code— Expander codes with RS inner codes contain GRM codewords because tensor products of univariate polynomials (corresponding to RS codewords) yield multivariate polynomials (corresponding to GRM codewords) [1].
  • Balanced product (BP) code— Balanced products of expander codes with RS inner codes yield \([q^{\text{polylog}(q)},k\geq n^{1-\epsilon},n/\text{poly}(\log n)]_q\) LTCs exhibiting the multiplication property [1].
  • \(q\)-ary linear LTC— Balanced products of expander codes with RS inner codes yield \([q^{\text{polylog}(q)},k\geq n^{1-\epsilon},n/\text{poly}(\log n)]_q\) LTCs exhibiting the multiplication property [1].

References

[1]
L. Golowich and T.-C. Lin, “Quantum LDPC Codes with Transversal Non-Clifford Gates via Products of Algebraic Codes”, (2024) arXiv:2410.14662
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: galois_expander

Cite as:
“Galois-qudit expander code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2024. https://errorcorrectionzoo.org/c/galois_expander
BibTeX:
@incollection{eczoo_galois_expander, title={Galois-qudit expander code}, booktitle={The Error Correction Zoo}, year={2024}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/galois_expander} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/galois_expander

Cite as:

“Galois-qudit expander code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2024. https://errorcorrectionzoo.org/c/galois_expander

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/quantum/qudits_galois/stabilizer/qldpc/balanced_product/galois_expander.yml.