Roth-Lempel code[1]
Description
Member of a \(q\)-ary linear code family that includes many examples of MDS codes that are not GRS codes.
The generator matrix of a Roth-Lempel code is \begin{align} G=\left(\begin{array}{cccccc} \alpha_{1}^{k-1} & \alpha_{2}^{k-1} & \cdots & \alpha_{n}^{k-1} & 1 & 0\\ \alpha_{1}^{k-2} & \alpha_{2}^{k-2} & \cdots & \alpha_{n}^{k-2} & 0 & 1\\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots\\ \alpha_{1}^{2} & \alpha_{2}^{2} & \cdots & \alpha_{n}^{2} & 0 & 0\\ \alpha_{1} & \alpha_{2} & \cdots & \alpha_{n} & 0 & 0\\ 1 & 1 & \cdots & 1 & 0 & 0 \end{array}\right)~, \tag*{(1)}\end{align} where \(\{\alpha_j\}\) is a set of elements of \(GF(q)\). The code is MDS if no subset of \(k-1\) elements sums to zero.
Parent
- Maximum distance separable (MDS) code — Roth-Lempel codes are examples of MDS codes that are not GRS codes.
Cousin
- Extended GRS code — Roth-Lempel codes are doubly extended RS codes.
References
- [1]
- R. M. Roth and A. Lempel, “A construction of non-Reed-Solomon type MDS codes”, IEEE Transactions on Information Theory 35, 655 (1989) DOI
Page edit log
- Victor V. Albert (2024-01-20) — most recent
Cite as:
“Roth-Lempel code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2024. https://errorcorrectionzoo.org/c/roth_lempel