Narrow-sense RS code[13] 

Description

An \([q-1,k,n-k+1]_q\) RS code whose points \(\alpha_i\) are all \((i-1)\)st powers of a primitive element \(\alpha\) of \(GF(q)\).

A narrow-sense RS code encodes a message \(\mu=\{\mu_0,\cdots,\mu_{k-1}\}\) into \(\{f_\mu(1),\{f_\mu(\alpha),\cdots,f_\mu(\alpha^{n-1})\}\) using a message-dependent polynomial \begin{align} f_\mu(x)=\mu_0+\mu_1 x + \cdots + \mu_{k-1}x^{k-1}. \tag*{(1)}\end{align} In other words, each message \(\mu\) is encoded into a string of values of the corresponding polynomial \(f_\mu\) at the points \(\alpha^{i-1}\), \begin{align} \mu\to\left( f_{\mu}\left(1\right),f_{\mu}\left(\alpha\right),\cdots,f_{\mu}\left(\alpha^{n-1}\right)\right) \,. \tag*{(2)}\end{align}

In an alternative convention (not used here), this code is called an RS code, and the general-root case is a generalized RS code.

Parents

Cousins

References

[1]
Bush, K. A. “Orthogonal Arrays of Index Unity.” The Annals of Mathematical Statistics 23, no. 3 (1952): 426–34.
[2]
K. A. Bush, “Orthogonal Arrays of Index Unity”, The Annals of Mathematical Statistics 23, 426 (1952) DOI
[3]
I. S. Reed and G. Solomon, “Polynomial Codes Over Certain Finite Fields”, Journal of the Society for Industrial and Applied Mathematics 8, 300 (1960) DOI
[4]
A. Couvreur, H. Randriambololona, "Algebraic Geometry Codes and Some Applications." Concise Encyclopedia of Coding Theory (Chapman and Hall/CRC, 2021) DOI
[5]
W. C. Huffman and V. Pless, Fundamentals of Error-Correcting Codes (Cambridge University Press, 2003) DOI
[6]
J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups (Springer New York, 1999) DOI
[7]
S. Ball, “On sets of vectors of a finite vector space in which every subset of basis size is a basis”, Journal of the European Mathematical Society 733 (2012) DOI
[8]
L. Storme, "Coding Theory and Galois Geometries." Concise Encyclopedia of Coding Theory (Chapman and Hall/CRC, 2021) DOI
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: narrow_sense_reed_solomon

Cite as:
“Narrow-sense RS code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2024. https://errorcorrectionzoo.org/c/narrow_sense_reed_solomon
BibTeX:
@incollection{eczoo_narrow_sense_reed_solomon, title={Narrow-sense RS code}, booktitle={The Error Correction Zoo}, year={2024}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/narrow_sense_reed_solomon} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/narrow_sense_reed_solomon

Cite as:

“Narrow-sense RS code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2024. https://errorcorrectionzoo.org/c/narrow_sense_reed_solomon

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/classical/q-ary_digits/ag/reed_solomon/rs/narrow_sense_reed_solomon.yml.