Semakov-Zinoviev-Zaitsev (SZZ) equidistant code[1]
Description
Member of a family that is related to affine resolvable block designs and that is universally optimal.
Parent
- \(q\)-ary sharp configuration — The SZZ equidistant code is a \(q\)-ary sharp configuration [2; Table 12.1].
References
- [1]
- N. V. Semakov, V. A. Zinoviev, G. V. Zaitsev, “A Class of Maximum Equidistant Codes”, Probl. Peredachi Inf., 5:2 (1969), 84–87; Problems Inform. Transmission, 5:2 (1969), 65–68
- [2]
- P. Boyvalenkov, D. Danev, "Linear programming bounds." Concise Encyclopedia of Coding Theory (Chapman and Hall/CRC, 2021) DOI
Page edit log
- Victor V. Albert (2023-02-24) — most recent
Cite as:
“Semakov-Zinoviev-Zaitsev (SZZ) equidistant code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2023. https://errorcorrectionzoo.org/c/semakov_zinoviev_zaitsev