Good QLDPC code 

Description

Also called asymptotically good QLDPC codes. A family of QLDPC codes \([[n_i,k_i,d_i]]\) whose asymptotic rate \(\lim_{i\to\infty} k_i/n_i\) and asymptotic distance \(\lim_{i\to\infty} d_i/n_i\) are both positive.

The first good QLDPC codes are families constructed by applying the CSS construction to classical Tanner codes on expander graphs [1]. The three constructions are closely related, assigning qubits and check operators to vertices, edges, and faces of a particular graph called the left-right Cayley complex.

Code

vertices

edges

faces

expander lifted-product

qubits

\(X,Z\) checks

qubits

quantum Tanner

\(X,Z\) checks

qubits

Dinur-Hsieh-Lin-Vidick

\(X\) checks

qubits

\(Z\) checks

Table I: Assignment of qubits and checks for three asymptotically good QLDPC codes.

See [2; Fig. 12] for more relationships between the constructions.

Rate

The codes'' rate and distance are both separated from zero as block length goes to infinity. Rains shadow enumerators can be used to show that the distance of an asymptotically good QLDPC code should be bounded as \(d\leq n/3\) [3]; see Ref. [4]. AEL distance amplification [5,6] can be used to construct asymptotically good QLDPC codes that approach the quantum Singleton bound [7; Corr. 5.3].

Parent

Cousins

  • Lattice stabilizer code — Chain complexes describing some good QLDPC codes can be 'lifted' into higher-dimensional manifolds admitting some notion of geometric locality [8,9]. Applying this procedure to good QLDPC codes yiels \([[n,n^{1-2/D},n^{1-1/D}]]\) lattice stabilizer codes in \(D\) spatial dimensions that saturate the BPT bound, up to corrections poly-logarithmic in \(n\) [10].
  • Quantum maximum-distance-separable (MDS) code — AEL distance amplification [5,6] can be used to construct asymptotically good QLDPC codes that approach the quantum Singleton bound [7; Corr. 5.3].
  • Layer code — Layer code parameters, \([[n,\Theta(n^{1/3}),\Theta(n^{1/3})]]\), achieve the BPT bound in 3D when asymptotically good QLDPC codes are used in the construction.
  • Dinur-Hsieh-Lin-Vidick (DHLV) code — DHLV code construction yields asymptotically good QLDPC codes.
  • Lossless expander balanced-product code — Taking a balanced product of two-sided expanders, which are only conjectured to exist, yields an asymptotically good QLDPC code family [11].
  • Quantum Tanner code — Quantum Tanner code construction yields asymptotically good QLDPC codes.
  • Expander LP code — Lifted products of certain classical Tanner codes are the first asymptotically good QLDPC codes.

References

[1]
S. Hoory, N. Linial, and A. Wigderson, “Expander graphs and their applications”, Bulletin of the American Mathematical Society 43, 439 (2006) DOI
[2]
T. Rakovszky and V. Khemani, “The Physics of (good) LDPC Codes II. Product constructions”, (2024) arXiv:2402.16831
[3]
E. M. Rains, “Quantum shadow enumerators”, (1997) arXiv:quant-ph/9611001
[4]
D. Miller et al., “Experimental measurement and a physical interpretation of quantum shadow enumerators”, (2024) arXiv:2408.16914
[5]
N. Alon, J. Edmonds, and M. Luby, “Linear time erasure codes with nearly optimal recovery”, Proceedings of IEEE 36th Annual Foundations of Computer Science DOI
[6]
N. Alon and M. Luby, “A linear time erasure-resilient code with nearly optimal recovery”, IEEE Transactions on Information Theory 42, 1732 (1996) DOI
[7]
T. Bergamaschi, L. Golowich, and S. Gunn, “Approaching the Quantum Singleton Bound with Approximate Error Correction”, (2022) arXiv:2212.09935
[8]
M. Freedman and M. B. Hastings, “Building manifolds from quantum codes”, (2021) arXiv:2012.02249
[9]
T.-C. Lin, A. Wills, and M.-H. Hsieh, “Geometrically Local Quantum and Classical Codes from Subdivision”, (2024) arXiv:2309.16104
[10]
E. Portnoy, “Local Quantum Codes from Subdivided Manifolds”, (2023) arXiv:2303.06755
[11]
T.-C. Lin and M.-H. Hsieh, “Good quantum LDPC codes with linear time decoder from lossless expanders”, (2022) arXiv:2203.03581
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: good_qldpc

Cite as:
“Good QLDPC code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/good_qldpc
BibTeX:
@incollection{eczoo_good_qldpc, title={Good QLDPC code}, booktitle={The Error Correction Zoo}, year={2022}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/good_qldpc} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/good_qldpc

Cite as:

“Good QLDPC code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/good_qldpc

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/quantum/properties/stabilizer/qldpc/good_qldpc.yml.