Nadler code[1] 

Description

A nonlinear \((12,32,5)\) binary code that is the largest double-error-correcting code.

An inequivalent code with the same parameters was constructed by Van Lint [2] and presented in [3; Ch. 2, Sec. 8]. Its automorphism group is a subgroup of \(S_3\times S_4\) [2].

While the two codes are inequivalent, the \((13,64,5)\) extension of both codes is unique and is a shortened NR code [4].

Parents

Cousin

References

[1]
M. Nadler, “A 32-point n=12, d=5 code (Corresp.)”, IRE Transactions on Information Theory 8, 58 (1962) DOI
[2]
J. van Lint, “A new description of the Nadler code (Corresp.)”, IEEE Transactions on Information Theory 18, 825 (1972) DOI
[3]
F. J. MacWilliams and N. J. A. Sloane. The theory of error correcting codes. Elsevier, 1977.
[4]
J.-M. Goethals, “The extended Nadler code is unique (Corresp.)”, IEEE Transactions on Information Theory 23, 132 (1977) DOI
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: nadler

Cite as:
“Nadler code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2024. https://errorcorrectionzoo.org/c/nadler
BibTeX:
@incollection{eczoo_nadler, title={Nadler code}, booktitle={The Error Correction Zoo}, year={2024}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/nadler} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/nadler

Cite as:

“Nadler code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2024. https://errorcorrectionzoo.org/c/nadler

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/classical/bits/nonlinear/gray_map/originals/nadler.yml.