[Jump to code hierarchy]

Construction \(A_4\) code

Alternative names: Mod-four lattice.

Description

Sphere packing constructed from a linear code over \(\mathbb{Z}_4\) using Construction \(A_4\).

Construction \(A_4\): Construction \(A_4\) converts a linear code over \(\mathbb{Z}_4\) into a lattice. Each codeword \(c\) of the code is mapped to an infinite set of points \(x\) such that \(2x = c\) modulo four.

Cousins

Member of code lists

Primary Hierarchy

Parents
Construction \(A_4\) code
Children
The union of RM\((1,5)\) and 2RM\((3,5)\) codes yields a Type II self-dual linear code over \(\mathbb{Z}_4\) that then gives rise to the \(B_{32}\) Barnes-Wall lattice via Construction \(A_4\) [3,4].
The Leech lattice can be constructed from pseudo Golay codes via Construction \(A_4\) [5,6]. The Leech lattice can be obtained by lifting the Golay code to \(\mathbb{Z}_4\) [7], appending a parity check, and applying Construction \(A_4\) [2] (see also [8,9]). Half of the lattice can be obtained in a different construction [10; Exam. 10.7.3].
Niemeier lattices can be constructed from quaternary codes over \(\mathbb{Z}_4\) via Construction \(A_4\) [11]. These codes are the Harada-Kitazume codes [12].
The octacode yields the \(E_8\) Gosset lattice via Construction \(A_4\) [2,3].

References

[1]
W. C. Huffman and V. Pless, Fundamentals of Error-Correcting Codes (Cambridge University Press, 2003) DOI
[2]
A. Bonnecaze and P. Solé, “Quaternary constructions of formally self-dual binary codes and unimodular lattices”, Lecture Notes in Computer Science 194 (1994) DOI
[3]
A. Bonnecaze, P. Sole, and A. R. Calderbank, “Quaternary quadratic residue codes and unimodular lattices”, IEEE Transactions on Information Theory 41, 366 (1995) DOI
[4]
P. Sole, "Generalized theta functions for lattice vector quantization", in Coding and Quantization, DIMACS Series in Dr,crete Mathenulies and Theoretical Computer Science, vol. 14. Providence, RH: American Math. Soc., 1993, pp. 27-32.
[5]
E. Rains, “Optimal self-dual codes over Z4”, Discrete Mathematics 203, 215 (1999) DOI
[6]
G. W. Moore and R. K. Singh, “Beauty And The Beast Part 2: Apprehending The Missing Supercurrent”, (2023) arXiv:2309.02382
[7]
A. R. Hammons, P. V. Kumar, A. R. Calderbank, N. J. A. Sloane, and P. Sole, “The Z/sub 4/-linearity of Kerdock, Preparata, Goethals, and related codes”, IEEE Transactions on Information Theory 40, 301 (1994) DOI
[8]
“Twenty-three constructions for the Leech lattice”, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences 381, 275 (1982) DOI
[9]
J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups (Springer New York, 1999) DOI
[10]
T. Ericson, and V. Zinoviev, eds. Codes on Euclidean spheres. Elsevier, 2001.
[11]
A. Bonnecaze, P. Gaborit, M. Harada, M. Kitazume, and P. Solé, “Niemeier lattices and Type II codes over Z4”, Discrete Mathematics 205, 1 (1999) DOI
[12]
M. Harada and M. Kitazume, “Z4-Code Constructions for the Niemeier Lattices and their Embeddings in the Leech Lattice”, European Journal of Combinatorics 21, 473 (2000) DOI
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: construction_a4

Cite as:
“Construction \(A_4\) code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2025. https://errorcorrectionzoo.org/c/construction_a4
BibTeX:
@incollection{eczoo_construction_a4, title={Construction \(A_4\) code}, booktitle={The Error Correction Zoo}, year={2025}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/construction_a4} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/construction_a4

Cite as:

“Construction \(A_4\) code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2025. https://errorcorrectionzoo.org/c/construction_a4

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/classical/analog/sphere_packing/from_codes/construction_a4.yml.