\(D_3\) face-centered cubic (fcc) lattice code 

Also known as Cannonball lattice.

Description

Laminated three-dimensional lattice consisting of layers of hexagonal lattices.

Protection

The \(D_3\) fcc lattice exhibits the densest packing, highest kissing number of 12, and the thinnest lattice covering in three dimensions. The Kepler conjecture [1] states that the \(D_3\) fcc lattice has the densest packing in 3D.

It was first proven that this lattice was the densest 3D lattice packing [2]. Determining the maximum density of any sphere packing in 3D was then reduced to a computationally tractable problem [3], which was solved [4] and formalized in automated proof checking software [5].

Parent

Cousins

References

[1]
Kepler, Johannes. The six-cornered snowflake. Paul Dry Books, 2010.
[2]
C.F. Gauss, Besprechung des Buchs von L.A. Seeber, Untersuchungen uber die Eigenschaften der positiven terndren quadratischen Formen usw. Gottingsche Gelehrte Anzeigen, July 9, 1831 = Werke, II, pp. 18g8-196, 1876.
[3]
L. F. Tóth, Lagerungen in Der Ebene Auf Der Kugel Und Im Raum (Springer Berlin Heidelberg, 1972) DOI
[4]
T. C. Hales, “An overview of the Kepler conjecture”, (2002) arXiv:math/9811071
[5]
T. Hales et al., “A formal proof of the Kepler conjecture”, (2015) arXiv:1501.02155
[6]
T. Ericson, and V. Zinoviev, eds. Codes on Euclidean spheres. Elsevier, 2001.
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: dthree

Cite as:
\(D_3\) face-centered cubic (fcc) lattice code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/dthree
BibTeX:
@incollection{eczoo_dthree, title={\(D_3\) face-centered cubic (fcc) lattice code}, booktitle={The Error Correction Zoo}, year={2022}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/dthree} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/dthree

Cite as:

\(D_3\) face-centered cubic (fcc) lattice code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/dthree

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/classical/analog/lattice/root/dthree.yml.