[Jump to code hierarchy]

Body-centered cubic (bcc) lattice

Description

Three-dimensional lattice consisting of all points \((x,y,z)\) whose integer components are either all even or all odd.

Protection

The bcc lattice has density \(\Delta=\pi\sqrt{3}/8\approx 0.6802\). It exhibits the thinnest lattice covering [1] in three dimensions. It solves the lattice quantizer problem in three dimensions with \(G_3 = \frac{19}{192\cdot 2^{1/3}}\approx 0.0785\) [2].

Cousins

Member of code lists

Primary Hierarchy

Parents
The bcc lattice is the dual of the \(A_3=D_3\) fcc lattice.
Body-centered cubic (bcc) lattice

References

[1]
Bambah, R. P., and H. Gupta. "On lattice coverings by spheres." Proceedings of the National Institute of Sciences of India. Vol. 20. Indian National Science Academy, 1954.
[2]
E. S. Barnes and N. J. A. Sloane, “The Optimal Lattice Quantizer in Three Dimensions”, SIAM Journal on Algebraic Discrete Methods 4, 30 (1983) DOI
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: bcc

Cite as:
“Body-centered cubic (bcc) lattice”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/bcc
BibTeX:
@incollection{eczoo_bcc, title={Body-centered cubic (bcc) lattice}, booktitle={The Error Correction Zoo}, year={2022}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/bcc} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/bcc

Cite as:

“Body-centered cubic (bcc) lattice”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/bcc

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/classical/analog/lattice/dual/bcc.yml.