\(A_n^{\perp}\) lattice code 

Description

Stub.

Protection

Exhibits the thinnest covering in two dimensions and the thinnest lattice covering in dimensions three [1], four [2], and five [3,4].

Parent

Child

Cousin

References

[1]
Bambah, R. P., and H. Gupta. "On lattice coverings by spheres." Proceedings of the National Institute of Sciences of India. Vol. 20. Indian National Science Academy, 1954.
[2]
Delaunay, B. N., and S. S. Ryskov. "Solution of the problem of least dense lattice covering of a four-dimensional space by equal spheres." Sov. Math. Dokl. Vol. 4. 1963.
[3]
S. S. Ryshkov, E. P. Baranovskii, “Solution of the problem of least dense lattice covering of five-dimensional space by equal spheres”, Dokl. Akad. Nauk SSSR, 222:1 (1975), 39–42
[4]
S. S. Ryshkov, E. P. Baranovskii, “C-types of n-dimensional lattices and 5-dimensional primitive parallelohedra (with application to the theory of coverings)”, Trudy Mat. Inst. Steklov., 137, 1976, 3–131; Proc. Steklov Inst. Math., 137 (1976), 1–140
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: an_dual

Cite as:
\(A_n^{\perp}\) lattice code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/an_dual
BibTeX:
@incollection{eczoo_an_dual, title={\(A_n^{\perp}\) lattice code}, booktitle={The Error Correction Zoo}, year={2022}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/an_dual} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/an_dual

Cite as:

\(A_n^{\perp}\) lattice code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/an_dual

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/classical/analog/lattice/dual/an_dual.yml.