[Jump to code hierarchy]

Self-dual code over \(R\)

Description

An additive linear code \(C\) over a ring \(R\) that is equal to its dual, \(C^\perp = C\), where the dual is defined with respect to some inner product.

Cousin

  • Niemeier lattice— Extremal Type II self-dual codes of length 24 over \(\mathbb{Z}_6\) yield Niemeier lattices [1].

Primary Hierarchy

Parents
Self-dual code over \(R\)
Children
Harada-Kitazume codes are extremal Type II self-dual codes over \(\mathbb{Z}_4\) [2].
The octacode is self-dual over \(\mathbb{Z}_4\).
Pseudo Golay codes are Type II self-dual codes over \(\mathbb{Z}_4\) [3; Thm. 9].

References

[1]
M. Harada and M. Kitazume, “Z6-Code Constructions of the Leech Lattice and the Niemeier Lattices”, European Journal of Combinatorics 23, 573 (2002) DOI
[2]
M. Harada and M. Kitazume, “Z4-Code Constructions for the Niemeier Lattices and their Embeddings in the Leech Lattice”, European Journal of Combinatorics 21, 473 (2000) DOI
[3]
E. Rains, “Optimal self-dual codes over Z4”, Discrete Mathematics 203, 215 (1999) DOI
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: self_dual_over_rings

Cite as:
“Self-dual code over \(R\)”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2024. https://errorcorrectionzoo.org/c/self_dual_over_rings
BibTeX:
@incollection{eczoo_self_dual_over_rings, title={Self-dual code over \(R\)}, booktitle={The Error Correction Zoo}, year={2024}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/self_dual_over_rings} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/self_dual_over_rings

Cite as:

“Self-dual code over \(R\)”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2024. https://errorcorrectionzoo.org/c/self_dual_over_rings

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/classical/rings/dual/self_dual_over_rings.yml.