\((1,3)\) 4D toric code[1] 

Description

A generalization of the Kitaev surface code defined on a 4D lattice. The code is called a \((1,3)\) toric code because it admits 1D \(Z\)-type and 3D \(X\)-type logical operators.

Transversal Gates

Logical \(CCCZ\) gate on a hyper-diamond lattice [1].

Parents

  • Homological code — The \((1,3)\) 4D toric code realizes 4D \(\mathbb{Z}_2\) gauge theory with 1D \(Z\)-type and 3D \(X\)-type logical operators.
  • Lattice stabilizer code
  • Abelian topological code — The \((1,3)\) 4D toric code realizes 4D \(\mathbb{Z}_2\) gauge theory with 1D \(Z\)-type and 3D \(X\)-type logical operators.

Cousin

References

[1]
T. Jochym-O’Connor and T. J. Yoder, “Four-dimensional toric code with non-Clifford transversal gates”, Physical Review Research 3, (2021) arXiv:2010.02238 DOI
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: 4d_13_surface

Cite as:
\((1,3)\) 4D toric code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2024. https://errorcorrectionzoo.org/c/4d_13_surface
BibTeX:
@incollection{eczoo_4d_13_surface, title={\((1,3)\) 4D toric code}, booktitle={The Error Correction Zoo}, year={2024}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/4d_13_surface} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/4d_13_surface

Cite as:

\((1,3)\) 4D toric code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2024. https://errorcorrectionzoo.org/c/4d_13_surface

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/quantum/qubits/stabilizer/topological/surface/higher_d/4d_13_surface.yml.