[Jump to code hierarchy]

Tensor-product HDX code[1]

Description

Code constructed in a similar way as the HDX code, but utilizing tensor products of multiple Ramanujan complexes and then applying distance balancing. These improve the asymptotic code distance over the HDX codes from \(\sqrt{n}\log n\) to \(\sqrt{n}~\text{polylog}(n)\). The utility of such tensor products comes from the fact that one of the Ramanujan complexes is a collective cosystolic expander as opposed to just a cosystolic expander.

Protection

Construction yields explicit QLDPC codes with distance \(\sqrt{n}\log^c n\) using the \(c\)-tensor-product of Ramanujan complexes.

References

[1]
T. Kaufman and R. J. Tessler, “New Cosystolic Expanders from Tensors Imply Explicit Quantum LDPC Codes with \(Ω(\sqrt{n}\log^kn)\) Distance”, (2020) arXiv:2008.09495
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: iterated_ramanujan

Cite as:
“Tensor-product HDX code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/iterated_ramanujan
BibTeX:
@incollection{eczoo_iterated_ramanujan, title={Tensor-product HDX code}, booktitle={The Error Correction Zoo}, year={2022}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/iterated_ramanujan} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/iterated_ramanujan

Cite as:

“Tensor-product HDX code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/iterated_ramanujan

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/quantum/qubits/stabilizer/qldpc/homological/ramanujan/iterated_ramanujan.yml.