Hyperbolic color code[13] 

Description

An extension of the color code construction to hyperbolic manifolds. As opposed to there being only three types of uniform three-valent and three-colorable lattice tilings in the 2D Euclidean plane, there is an infinite number of admissible hyperbolic tilings in the 2D hyperbolic plane [2]. Certain double covers of hyperbolic tilings also yield admissible tilings [1]. Other admissible hyperbolic tilings can be obtained via a fattening procedure [4]; see also a construction based on the more general quantum pin codes [3].

Protection

The use of hyperbolic surfaces allows one to circumvent bounds on code parameters (such as the BPT bound) that are valid for lattice geometries. Hyperbolic color codes can have high rate but tend to have small distance. For example, a \(\{4g,4g\}\) tiling with periodic boundary conditions (i.e., a \(g\)-torus) yields a \([[4g+8,4g,4]]\) code family [2]. More examples, such as the \([[160,20,8]]\) code on the 4.10.10 tiling, are provided in [3; Sec. V.A].

Rate

In the double-cover construction [1], an \(\{\ell,m\}\) input tiling yields a code family with an asymptotic rate of \(1 - 1/\ell - 1/m\).

Decoding

Two flag-based decoders [5].

Parent

Child

Cousins

References

[1]
N. Delfosse, “Tradeoffs for reliable quantum information storage in surface codes and color codes”, 2013 IEEE International Symposium on Information Theory (2013) arXiv:1301.6588 DOI
[2]
E. B. da Silva and W. S. Soares Jr, “Hyperbolic quantum color codes”, (2018) arXiv:1804.06382
[3]
C. Vuillot and N. P. Breuckmann, “Quantum Pin Codes”, IEEE Transactions on Information Theory 68, 5955 (2022) arXiv:1906.11394 DOI
[4]
H. Bombin and M. A. Martin-Delgado, “Exact topological quantum order inD=3and beyond: Branyons and brane-net condensates”, Physical Review B 75, (2007) arXiv:cond-mat/0607736 DOI
[5]
S. Vittal et al., “Flag Proxy Networks: Tackling the Architectural, Scheduling, and Decoding Obstacles of Quantum LDPC codes”, (2024) arXiv:2409.14283
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: hyperbolic_color

Cite as:
“Hyperbolic color code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2024. https://errorcorrectionzoo.org/c/hyperbolic_color
BibTeX:
@incollection{eczoo_hyperbolic_color, title={Hyperbolic color code}, booktitle={The Error Correction Zoo}, year={2024}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/hyperbolic_color} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/hyperbolic_color

Cite as:

“Hyperbolic color code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2024. https://errorcorrectionzoo.org/c/hyperbolic_color

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/quantum/qubits/stabilizer/topological/color/hyperbolic_color.yml.