Tillich-Zémor code[1]
Alternative names: Quantum \((n, m, r)\)-structured LDPC code.
Description
A family of \([[n^2 + m^2, (n - \text{rank}([C \mid M]))^2 + (m - \text{rank}([C \mid M]^\top))^2, d]]\) quantum LDPC codes constructed via the hypergraph product of two classical \((n, m, r)\)-structured LDPC seed codes
A code’s parity-check matrix \(H = [C \mid M]\) consists of an \(m \times m\) circulant core \(C\) with column weight \(2\) (enabling linear-time encoding) and an \(m \times (n-m)\) matrix \(M\) with column weight \(r \geq 3\) and no zero rows. The resulting code has block length \(N = n^2 + m^2\) and code dimension \(K = (n - \text{rank}([C \mid M]))^2 + (m - \text{rank}([C \mid M]^\top))^2\).
Primary Hierarchy
References
- [1]
- J. Tillich and G. Zemor, “On the minimum distance of structured LDPC codes with two variable nodes of degree 2 per parity-check equation”, 2006 IEEE International Symposium on Information Theory 1549 (2006) DOI
- [2]
- F. Arnault, P. Gaborit, W. Rozendaal, N. Saussay, and G. Zémor, “Upper Bounds on the Minimum Distance of Structured LDPC Codes”, (2025) arXiv:2501.19125
Page edit log
- Victor V. Albert (2025-23-07) — most recent
- Feroz Ahmed Mian (2025-23-07)
Cite as:
“Tillich-Zémor code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), NaN. https://errorcorrectionzoo.org/c/tillichzemor