Here is a list of codes defined on \(n\) identical subsystems (e.g., qubits, modular qudits, or Galois qudits) that detect or correct an error on at most one subsystem.
Code Description
Braunstein five-mode code A \([[5,1,3]]_{\mathbb{R}}\) analog stabilizer version of the five-qubit perfect code.
Bring's code Also called a small stellated dodecahedron code. A \([[30,8,3]]\) hyperbolic surface code on a quotient of the \(\{5,5\}\) hyperbolic tiling called Bring's curve. Its qubits and stabilizer generators lie on the vertices of the small stellated dodecahedron. Admits a set of weight-five stabilizer generators.
Five-qubit perfect code Five-qubit stabilizer code with generators that are symmetric under cyclic permutation of qubits, \begin{align} \begin{split} S_1 &= IXZZX \\ S_2 &= XZZXI \\ S_3 &= ZZXIX \\ S_4 &= ZXIXZ~. \end{split} \tag*{(1)}\end{align}
Five-rotor code Extension of the five-qubit stabilizer code to the integer alphabet, i.e., the angular momentum states of a planar rotor. The code is \(U(1)\)-covariant and ideal codewords are not normalizable.
Kitaev chain code An \([[n,1,1]]_{f}\) Majorana stabilizer code forming the ground-state of the Kitaev Majorana chain (a.k.a. Kitaev Majorana wire) in its topological phase, which is equivalent to the 1D quantum Ising model in the symmetry-breaking phase via the Jordan-Wigner transformation. The code is usually defined using the algebra of two anti-commuting Majorana operators called Majorana zero modes (MZMs) or Majorana edge modes (MEMs).
Lloyd-Slotine nine-mode code A \([[9,1,3]]_{\mathbb{R}}\) analog CSS version of Shor's nine-qubit code.
Small-distance block quantum code A block code on \(n\) subsystems that either detects or corrects errors on only a single subsystem. These two cases correspond to distance \(d=2\) or \(d=3\) block quantum codes, respectively.
Tetron Majorana code Also called a Majorana box qubit or Majorana qubit. An \([[n,2,2]]_{f}\) Majorana stabilizer code forming the even-fermion-parity ground-state subspace of two parallel Kitaev Majorana chains in their topological phase. An extension using three Kitaev chains and housing two logical qubits of the same parity is called the hexon Majorana code.
Three-qutrit code A \([[3,1,2]]_3\) prime-qudit CSS code with stabilizer generators \(ZZZ\) and \(XXX\). The code defines a quantum secret-sharing scheme and serves as a minimal model for the AdS/CFT holographic duality. It is also the smallest non-trivial instance of a quantum maximum distance separable code (QMDS), saturating the quantum Singleton bound. The codewords are \begin{align} \begin{split} | \overline{0} \rangle &= \frac{1}{\sqrt{3}} (| 000 \rangle + | 111 \rangle + | 222 \rangle) \\ | \overline{1} \rangle &= \frac{1}{\sqrt{3}} (| 012 \rangle + | 120 \rangle + | 201 \rangle) \\ | \overline{2} \rangle &= \frac{1}{\sqrt{3}} (| 021 \rangle + | 102 \rangle + | 210 \rangle)~. \end{split} \tag*{(2)}\end{align} The elements in the superposition of each logical codeword are related to each other via cyclic permutations.
Three-rotor code \([[3,1,2]]_{\mathbb Z}\) rotor code that is an extension of the \([[3,1,2]]_3\) qutrit CSS code to the integer alphabet, i.e., the angular momentum states of a planar rotor. The code is \(U(1)\)-covariant and its ideal codewords, \begin{align} |\overline{x}\rangle = \sum_{y\in\mathbb{Z}} \left| -3y,y-x,2(y+x) \right\rangle~, \tag*{(3)}\end{align} where \(x\in\mathbb{Z}\), are not normalizable.
Transverse-field Ising model (TFIM) code A 1D translationally invariant stabilizer code whose encoding is a constant-depth circuit of nearest-neighbor gates on alternating even and odd bonds that consist of transverse-field Ising Hamiltonian interactions. The code allows for perfect state transfer of arbitrary distance using local operations and classical communications (LOCC).
\(((5,6,2))\) qubit code Six-qubit cyclic CWS code detecting a single-qubit error. Smallest nontrivial member of the \(((5+2r,3\times 2^{2r+1},2))\) qubit code family [1]. Qubit member of the \(((n, 1+n(q-1),2))_q\) Galois-qudit code family [2].
\([[15, 7, 3]]\) Hamming-based CSS code Self-dual Hamming-based CSS code that admits permutation-based CZ logical gates.
\([[15,1,3]]\) quantum Reed-Muller code \([[15,1,3]]\) CSS code that is most easily thought of as a tetrahedral 3D color code. This code contains 15 qubits, represented by four vertices, four face centers, six edge centers, and one body center. The tetrahedron is cellulated into four identical polyhedron cells by connecting the body center to all four face centers, where each face center is then connected by three adjacent edge centers. Each colored cell corresponds to a weight-8 \(X\)-check, and each face corresponds to a weight-4 \(Z\)-check. A logical \(Z\) is any weight-3 \(Z\)-string along an edge of the entire tetrahedron. The logical \(X\) is any weight-7 \(X\)-face of the entire tetrahedron.
\([[2^r, 2^r-r-2, 3]]\) quantum Hamming code A family of stabilizer codes of distance \(3\) that saturate the asymptotic quantum Hamming bound. Can be obtained from the CSS construction using a first-order \([2^r,r+1,2^{r-1}]\) RM code and a \([2^r,2^r-1,2]\) even-weight code [3].
\([[2^r-1, 1, 3]]\) quantum Reed-Muller code Member of CSS code family constructed with a first-order punctured RM\((1,r)\) \([2^r-1,r+1,2^{r-1}-1]\) code and its even subcode for \(r \geq 3\). Each code transversally implements a member of an infinite family of diagonal gates from the Clifford hierarchy [4].
\([[2^r-1, 2^r-2r-1, 3]]\) Hamming-based CSS code CCS code constructed with a classical Hamming code \([2^r-1,2^r-1-r,3]=C_X=C_Z\) a.k.a. a first-order punctured Reed-Muller code RM\((r-2,r)\).
\([[2^r-1, 2^r-2r-1, 3]]_p\) prime-qudit CSS code A family of CSS codes extending Hamming-based CSS codes to prime qudits of dimension \(p\) by expressing the qubit code stabilizers in local-dimension-invariant (LDI) form [5].
\([[2m,2m-2,2]]\) error-detecting code Also known as the iceberg code. CSS stabilizer code for \(m\geq 2\) with generators \(\{XX\cdots X, ZZ\cdots Z\} \) acting on all \(2m\) physical qubits. Admits a basis such that each codeword is a superposition of a computational basis state labeled by a bitstring \(b\) and a state labeled by the negation of \(b\). Such states generalize the two-qubit Bell states and three-qubit GHz states and are often called (qubit) cat states or poor-man's GHz states.
\([[4,2,2]]\) CSS code Also known as the \(C_4\) code. Four-qubit CSS stabilizer code with generators \(\{XXXX, ZZZZ\} \) and codewords \begin{align} \begin{split} |\overline{00}\rangle = (|0000\rangle + |1111\rangle)/\sqrt{2}~{\phantom{.}}\\ |\overline{01}\rangle = (|0011\rangle + |1100\rangle)/\sqrt{2}~{\phantom{.}}\\ |\overline{10}\rangle = (|0101\rangle + |1010\rangle)/\sqrt{2}~{\phantom{.}}\\ |\overline{11}\rangle = (|0110\rangle + |1001\rangle)/\sqrt{2}~. \end{split} \tag*{(4)}\end{align} This code is the smallest single-qubit error-detecting code. It is also the smallest instance of the toric code, and its various single-qubit subcodes are small planar surface codes.
\([[5,1,3]]_q\) Galois-qudit code True stabilizer code that generalizes the five-qubit perfect code to Galois qudits of prime-power dimension \(q=p^m\). It has \(4(m-1)\) stabilizer generators expressed as \(X^{\gamma} Z^{\gamma} Z^{-\gamma} X^{-\gamma} I\) and its cyclic permutations, with \(\gamma\) iterating over basis elements of \(GF(q)\) over \(GF(p)\).
\([[5,1,3]]_{\mathbb{Z}_q}\) modular-qudit code Modular-qudit stabilizer code that generalizes the five-qubit perfect code using properties of the multiplicative group \(\mathbb{Z}_q\) [6]; see also [7; Thm. 13]. It has four stabilizer generators consisting of \(X Z Z^\dagger X^\dagger I\) and its cyclic permutations. A concise expression for a set of codewords can be found in [8; Sec. VI.B].
\([[7,1,3]]\) Steane code A \([[7,1,3]]\) CSS code that uses the classical binary \([7,4,3]\) Hamming code for protecting against both \(X\) and \(Z\) errors. The parity-check matrix for the \([7,4,3]\) Hamming code is \begin{align} H = \left(\begin{matrix} 1&0&0&1&0&1&1\\ 0&1&0&1&1&0&1\\ 0&0&1&0&1&1&1 \end{matrix}\right), \tag*{(5)}\end{align} and the check matrix for the Steane code is therefore \begin{align} \left(\begin{matrix} 0&H\\ H&0 \end{matrix}\right). \tag*{(6)}\end{align} The stabilizer group for the Steane code has six generators. Logical codewords are \begin{align} \begin{split} |\overline{0}\rangle&=\frac{1}{\sqrt{8}}\Big(|0000000\rangle+|1010101\rangle+|0110011\rangle+|1100110\rangle\\&\,\,\,\,\,\,\,\,+|0001111\rangle+|1011010\rangle+|0111100\rangle+|1101001\rangle\Big)\\|\overline{1}\rangle&=\frac{1}{\sqrt{8}}\Big(|1111111\rangle+|0101010\rangle+|1001100\rangle+|0011001\rangle\\&\,\,\,\,\,\,\,\,+|1110000\rangle+|0100101\rangle+|1000011\rangle+|0010110\rangle\Big)~. \end{split} \tag*{(7)}\end{align} The automorphism group of the code is \(PGL(3,2)\) [9].
\([[8,3,2]]\) code Smallest 3D color code whose physical qubits lie on vertices of a cube and which admits a transversal CCZ gate. Similar constructions exist on \(d\)-dimensional hypercubes and are called hyperoctahedron \([[2^d,d,2]]\) codes [10].
\([[9,1,3]]\) Shor code Nine-qubit CSS code that is the smallest such code to correct a single-qubit error. Logical codewords are \begin{align} \begin{split} |\overline{0}\rangle&=\frac{1}{2\sqrt{2}}\left(|000\rangle+|111\rangle\right)^{\otimes3}\\ |\overline{1}\rangle&=\frac{1}{2\sqrt{2}}\left(|000\rangle-|111\rangle\right)^{\otimes3}~. \end{split} \tag*{(8)}\end{align} The code works by concatenating each qubit of a phase-flip with a bit-flip repetition code. Therefore, the code can correct both type of errors simultaneously.
\([[9,1,3]]_{\mathbb{Z}_q}\) modular-qudit code Modular-qudit CSS code that generalizes the \([[9,1,3]]\) Shor code using properties of the multiplicative group \(\mathbb{Z}_q\).
\([[k+4,k,2]]\) H code Family of \([[k+4,k,2]]\) CSS codes with transversal Hadamard gates; relevant to magic state distillation. The four stablizer generators are \(X_1X_2X_3X_4\), \(Z_1Z_2Z_3Z_4\), \(X_1X_2X_5X_6...X_{k+4}\), and \(Z_1Z_2Z_5Z_6...Z_{k+4}\).'

References

[1]
E. M. Rains, “Quantum codes of minimum distance two”, (1997) arXiv:quant-ph/9704043
[2]
V. Arvind, P. P. Kurur, and K. R. Parthasarathy, “Nonstabilizer Quantum Codes from Abelian Subgroups of the Error Group”, (2002) arXiv:quant-ph/0210097
[3]
A. M. Steane, “Simple quantum error-correcting codes”, Physical Review A 54, 4741 (1996) arXiv:quant-ph/9605021 DOI
[4]
S. X. Cui, D. Gottesman, and A. Krishna, “Diagonal gates in the Clifford hierarchy”, Physical Review A 95, (2017) arXiv:1608.06596 DOI
[5]
A. J. Moorthy and L. G. Gunderman, “Local-dimension-invariant Calderbank-Shor-Steane Codes with an Improved Distance Promise”, (2021) arXiv:2110.11510
[6]
H. F. Chau, “Five quantum register error correction code for higher spin systems”, Physical Review A 56, R1 (1997) arXiv:quant-ph/9702033 DOI
[7]
E. M. Rains, “Nonbinary quantum codes”, (1997) arXiv:quant-ph/9703048
[8]
P. Faist et al., “Continuous Symmetries and Approximate Quantum Error Correction”, Physical Review X 10, (2020) arXiv:1902.07714 DOI
[9]
H. Hao, “Investigations on Automorphism Groups of Quantum Stabilizer Codes”, (2021) arXiv:2109.12735
[10]
M. Vasmer and A. Kubica, “Morphing Quantum Codes”, PRX Quantum 3, (2022) arXiv:2112.01446 DOI
  • Home
  • Code graph
  • Code lists
  • Concepts glossary
  • Search

Classical Domain

  • Binary Kingdom
  • Galois-field Kingdom
  • Matrix Kingdom
  • Analog Kingdom
  • Spherical Kingdom
  • Ring Kingdom
  • Group Kingdom

Quantum Domain

  • Qubit Kingdom
  • Modular-qudit Kingdom
  • Galois-qudit Kingdom
  • Bosonic Kingdom
  • Spin Kingdom
  • Group Kingdom
  • Category Kingdom

Classical-quantum Domain

  • Binary c-q Kingdom
  • Bosonic/analog c-q Kingdom

  • Add new code
  • Additional resources
  • Team
  • About
≡
Error correction zoo by Victor V. Albert, Philippe Faist, and many contributors. This work is licensed under a CC-BY-SA License. See how to contribute.