Alternative names: Shorter hexacode, Golay code over \(\mathbb{F}_4\).
Description
A perfect \([5,3,3]_4\) quaternary Hamming code that is the result of puncturing the hexacode [3].Cousins
- \([6,3,4]_4\) Hexacode
- Self-dual linear code— The hexacode and the shortened hexacode are extremal [4; Tab. 9.14][3; Tm. 12].
- \([[5,1,3]]\) Five-qubit perfect code— The five-qubit code can be obtained either by applying the qubit Hermitian construction to the shortened hexacode [5; Exam. A] or by tracing out a qubit of the \([[6,0,4]]\) code [6; Appx. A].
- \([23, 12, 7]\) Golay code— The shortened hexacode is often referred to as the Golay code over \(\mathbb{F}_4\) [4].
- Reed-Solomon (RS) code— The dual of the shortened hexacode code is a \([5,2,4]_4\) doubly extended RS code [5; Exam. A].
Primary Hierarchy
Parents
The shortened hexacode is perfect [4; Exer. 578].
The shortened hexacode is an odd-like quadratic-residue code [4; Exam. 6.6.8].
\([5,3,3]_4\) Shortened hexacode
References
- [1]
- K. A. Bush, “Orthogonal Arrays of Index Unity”, The Annals of Mathematical Statistics 23, 426 (1952) DOI
- [2]
- J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups (Springer New York, 1999) DOI
- [3]
- G. Höhn, “Self-dual Codes over the Kleinian Four Group”, (2000) arXiv:math/0005266
- [4]
- W. C. Huffman and V. Pless, Fundamentals of Error-Correcting Codes (Cambridge University Press, 2003) DOI
- [5]
- G. D. Forney, M. Grassl, and S. Guha, “Convolutional and Tail-Biting Quantum Error-Correcting Codes”, IEEE Transactions on Information Theory 53, 865 (2007) arXiv:quant-ph/0511016 DOI
- [6]
- F. Pastawski, B. Yoshida, D. Harlow, and J. Preskill, “Holographic quantum error-correcting codes: toy models for the bulk/boundary correspondence”, Journal of High Energy Physics 2015, (2015) arXiv:1503.06237 DOI
Page edit log
- Victor V. Albert (2025-11-06) — most recent
Cite as:
“\([5,3,3]_4\) Shortened hexacode”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2025. https://errorcorrectionzoo.org/c/shortened_hexacode