[Jump to code hierarchy]

\([4,2,3]_4\) RS\(_4\) code

Alternative names: \(XQ(\mathbb{F}_4,3)\).

Description

A Type II Euclidean self-dual RS code that is the smallest quaternary extended QR code [1; Sec. 2.4.2].

A generator matrix for the code is \begin{align} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & \omega & \omega^2 \end{pmatrix}~, \tag*{(1)}\end{align} where \(\mathbb{F}_4 = \{0,1,\omega, \bar{\omega}\}\) is the quaternary Galois field.

The automorphism group of the code is \(3.S_4\) [1; Sec. 2.4.2].

Cousins

References

[1]
Self-Dual Codes and Invariant Theory (Springer-Verlag, 2006) DOI
[2]
P. Gaborit, V. Pless, P. Solé, and O. Atkin, “Type II Codes over F4”, Finite Fields and Their Applications 8, 171 (2002) DOI
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: reed_solomon_4

Cite as:
\([4,2,3]_4\) RS\(_4\) code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2026. https://errorcorrectionzoo.org/c/reed_solomon_4
BibTeX:
@incollection{eczoo_reed_solomon_4, title={\([4,2,3]_4\) RS\(_4\) code}, booktitle={The Error Correction Zoo}, year={2026}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/reed_solomon_4} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/reed_solomon_4

Cite as:

\([4,2,3]_4\) RS\(_4\) code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2026. https://errorcorrectionzoo.org/c/reed_solomon_4

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/classical/q-ary_digits/easy/reed_solomon_4.yml.