Alternative names: \(XQ(\mathbb{F}_4,3)\).
Description
A Type II Euclidean self-dual RS code that is the smallest quaternary extended QR code [1; Sec. 2.4.2].
A generator matrix for the code is \begin{align} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & \omega & \omega^2 \end{pmatrix}~, \tag*{(1)}\end{align} where \(\mathbb{F}_4 = \{0,1,\omega, \bar{\omega}\}\) is the quaternary Galois field.
The automorphism group of the code is \(3.S_4\) [1; Sec. 2.4.2].
Cousins
- Quadratic-residue (QR) code— The RS\(_4\) code is the smallest quaternary extended QR code [1; Sec. 2.4.2].
- \([8,4,4]\) extended Hamming code— The RS\(_4\) code can be mapped to the \([8,4,4]\) extended Hamming code [1; Sec. 2.4.2] by identifying \((0,\omega,\bar{\omega},1)\) with \((00),(10),(01),(11)\) [2].
Primary Hierarchy
Parents
The RS\(_4\) is the smallest Type II Euclidean self-dual code [1; Sec. 2.4.2].
Reed-Solomon (RS) codeGRS Evaluation MDS Linear \(q\)-ary OA AG Universally optimal LRC Distributed-storage ECC \(t\)-design
Maximum distance separable (MDS) codeLinear \(q\)-ary OA LRC Distributed-storage Universally optimal ECC \(t\)-design
\([4,2,3]_4\) RS\(_4\) code
References
Page edit log
- Victor V. Albert (2026-01-03) — most recent
Cite as:
“\([4,2,3]_4\) RS\(_4\) code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2026. https://errorcorrectionzoo.org/c/reed_solomon_4