Operator-algebra (OA) qubit stabilizer code[1] 

Also known as Hybrid subsystem qubit stabilizer code.

Description

An OAQECC in which the commutant \(\mathcal{A}'\) of the logical algebra \(\mathcal{A}\) arises as the group algebra of a subgroup \(\mathsf{G}\) of the \(n\)-qubit Pauli group \(\mathsf{P}_n\).

The stabilizer \(\mathsf{S}\) is the center of \(\mathsf{G}\) modulo factors of \(i I\). The quotient \(\mathsf{P}_n / \mathsf{N(S)}\), where \(\mathsf{N(S)}\) is the normalizer of \(\mathsf{S}\), is in bijective correspondence with the factors of the logical algebra \(\mathcal{A}\).

Protection

Specialized conditions for the correctability of \(\mathcal{A}\) with respect to an error operation \(\mathcal{E}\) with operation elements \(\{E_j\}_j\) can be given in group theoretic terms. Indeed, \(\mathcal{A}\) is correctable for \(\mathcal{E}\) if, for all \(j,k\), \begin{align} E_{j}^{\dagger}E_{k}&\notin(\mathsf{N(S)}-\mathsf{G})\cup\tag*{(1)}\\& \,\,\,\,\,\,\,\,\,\,\,\,\,\cup\left(\bigcup_{\tau,\sigma:\tau\mathsf{N(S)}\neq\sigma\mathsf{N(S)}}\tau\mathsf{N(S)}\sigma\right)~. \tag*{(2)}\end{align}

Parent

Children

  • Hybrid stabilizer code — An OA stabilizer code which has no gauge qubits but has a block structure that corresponds to a linear binary code is a hybrid stabilizer code.
  • Qubit stabilizer code — An OA qubit stabilizer code storing no classical information and admitting no gauge qubits is a qubit stabilizer code.
  • Subsystem qubit stabilizer code — An OA qubit stabilizer code storing no classical information but retaining gauge qubits for its quantum code is a subsystem qubit stabilizer code.

Cousin

  • Quantum synchronizable code — Quantum synchronizable versions of qubit subsystem codes, hybrid codes, and OA qubit stabilizer codes have been constructed [2].

References

[1]
G. Dauphinais, D. W. Kribs, and M. Vasmer, “Stabilizer Formalism for Operator Algebra Quantum Error Correction”, Quantum 8, 1261 (2024) arXiv:2304.11442 DOI
[2]
T. Tansuwannont and A. Nemec, “Synchronizable hybrid subsystem codes”, (2024) arXiv:2409.11312
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: qubit_stabilizer_oaqecc

Cite as:
“Operator-algebra (OA) qubit stabilizer code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), NaN. https://errorcorrectionzoo.org/c/qubit_stabilizer_oaqecc
BibTeX:
@incollection{eczoo_qubit_stabilizer_oaqecc, title={Operator-algebra (OA) qubit stabilizer code}, booktitle={The Error Correction Zoo}, year={NaN}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/qubit_stabilizer_oaqecc} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/qubit_stabilizer_oaqecc

Cite as:

“Operator-algebra (OA) qubit stabilizer code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), NaN. https://errorcorrectionzoo.org/c/qubit_stabilizer_oaqecc

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/quantum/qubits/oa/qubit_stabilizer_oaqecc.yml.