Glynn code[1] 

Description

The unique trace-Hermitian self-dual \([10,5,6]_9\) code, constructed using a 10-arc in \(PG(4,9)\) that is not a rational curve.

The Glynn code is the unique trace-Hermitian code for its parameters, and is not Euclidean self-dual [24].

Parents

Cousins

References

[1]
D. G. Glynn, “The non-classical 10-arc of PG(4, 9)”, Discrete Mathematics 59, 43 (1986) DOI
[2]
T. Baicheva, I. Bouyukliev, S. Dodunekov, and W. Willems, “On the [10; 5; 6] Reed-Solomon and Glynn codes,” Mathematica Balkanica, New Series, vol. 18, pp. 67–78, 200
[3]
T. A. Gulliver, J.-L. Kim, and Y. Lee, “New MDS or Near-MDS Self-Dual Codes”, IEEE Transactions on Information Theory 54, 4354 (2008) DOI
[4]
M. Grassl and T. A. Gulliver, “On circulant self-dual codes over small fields”, Designs, Codes and Cryptography 52, 57 (2009) DOI
[5]
M. Grassl and M. Rotteler, “Quantum MDS codes over small fields”, 2015 IEEE International Symposium on Information Theory (ISIT) (2015) arXiv:1502.05267 DOI
[6]
S. Ball, “Some constructions of quantum MDS codes”, (2021) arXiv:1907.04391
[7]
S. Ball and R. Vilar, “The geometry of Hermitian self-orthogonal codes”, (2021) arXiv:2108.08088
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: glynn

Cite as:
“Glynn code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/glynn
BibTeX:
@incollection{eczoo_glynn, title={Glynn code}, booktitle={The Error Correction Zoo}, year={2022}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/glynn} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/glynn

Cite as:

“Glynn code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/glynn

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/classical/q-ary_digits/easy/glynn.yml.