Generalized quantum divisible code[1]
Description
A level-\(\nu\) generalized quantum divisible code is a CSS code whose \(X\)-type stabilizers, in the symplectic representation, have zero norm and form a \((\nu,t)\)-null matrix (defined below) with respect to some odd-integer vector \(t\) [1; Def. V.1]. Such codes admit gates at the \(\nu\)th level of the Clifford hierarchy. Such codes can also be level-lifted [1; Theorem V.6], \(\nu\to\nu+1\), which recursively yields towers of generalized divisible codes from a particular ground code.
Given an odd-integer coefficient length-\(n\) vector \(t\), two vectors \(v,w\) are \((\nu,t)\)-orthogonal if \begin{align} \sum_i v_i t_i w_i \equiv 0 \mod 2^{\nu-1}~. \tag*{(1)}\end{align} A matrix whose rows make up such vectors is called \((\nu,t)\)-orthogonal.
Transversal Gates
A level-\(\nu\) generalized quantum divisible code admits a diagonal transversal gate at the \(\nu\)th level of the Clifford hierarchy [1; Lemma V.3].Cousins
- Triorthogonal code— Triorthogonal codes are stabilizer codes, while generalized quantum divisible codes are CSS codes. Every level-three generalized divisible code is a triorthogonal code, but whether the converse is true or false is not known [1; Sec. VI.C].
- Random stabilizer code— Random CSS codes [2] can be used to construct families of \([[O(d^{\nu−1}), \Omega(d), d]]\) level-\(\nu\) generalized quantum divisible codes [1; Sec. VI.A].
Primary Hierarchy
References
- [1]
- J. Haah, “Towers of generalized divisible quantum codes”, Physical Review A 97, (2018) arXiv:1709.08658 DOI
- [2]
- A. R. Calderbank and P. W. Shor, “Good quantum error-correcting codes exist”, Physical Review A 54, 1098 (1996) arXiv:quant-ph/9512032 DOI
Page edit log
- Connor Clayton (2024-03-15) — most recent
- Victor V. Albert (2024-02-28)
Cite as:
“Generalized quantum divisible code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2024. https://errorcorrectionzoo.org/c/generalized_quantum_divisible