[Jump to code hierarchy]

Tamo-Barg-Vladut code[1,2]

Description

Polynomial evaluation code on algebraic curves, such as Hermitian or Garcia-Stichtenoth curves, that is constructed to be an LRC. Codes can be constructed to be be able to recover locally after one or more erasures as well as to tackle the availability problem.

Rate

Tamo-Barg-Vladut codes on asymptotically maximal curves improve upon the asymptotic LRC GV bound [2].

Cousin

  • Hermitian code— Tamo-Barg-Vladut codes can be defined on Hermitian curves.

Primary Hierarchy

Parents
Tamo-Barg-Vladut codes are evaluation AG codes on algebraic curves, such as Hermitian or Garcia-Stichtenoth curves.
Tamo-Barg-Vladut code
Children

References

[1]
A. Barg, I. Tamo, and S. Vladut, “Locally recoverable codes on algebraic curves”, (2015) arXiv:1501.04904
[2]
A. Barg, I. Tamo, and S. Vladut, “Locally recoverable codes on algebraic curves”, 2015 IEEE International Symposium on Information Theory (ISIT) (2015) arXiv:1603.08876 DOI
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: tamo_barg_vladut

Cite as:
“Tamo-Barg-Vladut code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2024. https://errorcorrectionzoo.org/c/tamo_barg_vladut
BibTeX:
@incollection{eczoo_tamo_barg_vladut, title={Tamo-Barg-Vladut code}, booktitle={The Error Correction Zoo}, year={2024}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/tamo_barg_vladut} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/tamo_barg_vladut

Cite as:

“Tamo-Barg-Vladut code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2024. https://errorcorrectionzoo.org/c/tamo_barg_vladut

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/classical/q-ary_digits/distributed_storage/lrc/tamo_barg_vladut.yml.