Description
A spherical \((22,275,1/6)\) code associated with the McLaughlin graph; see Ref. [1] for an explicit construction.Cousin
- \([23, 12, 7]\) Golay code— The McLaughlin spherical code can be constructed from length-22 Golay codewords [1].
Member of code lists
Primary Hierarchy
Spherical sharp configurationSpherical design Sharp configuration Universally optimal ECC \(t\)-design
Parents
McLaughlin spherical code
References
- [1]
- P. Boyvalenkov, P. Dragnev, D. Hardin, E. Saff, and M. Stoyanova, “Universal minima of discrete potentials for sharp spherical codes”, (2023) arXiv:2211.00092
- [2]
- H. Cohn and A. Kumar, “Universally optimal distribution of points on spheres”, Journal of the American Mathematical Society 20, 99 (2006) arXiv:math/0607446 DOI
Page edit log
- Victor V. Albert (2022-11-28) — most recent
Cite as:
“McLaughlin spherical code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/mclaughlin