[Jump to code hierarchy]

McLaughlin spherical code[1,2]

Description

The \((22,275,1/6)\) or \((23,552,1/5)\) code associated with the McLaughlin graph and the Leech lattice. See Ref. [3] for explicit constructions of and relations between both codes.

Cousins

Primary Hierarchy

Parents
Both McLaughlin spherical codes are sharp configurations [3,4]. The \((22,275,1/6)\) code is a unique and tight spherical 4-design, while the \((23,552,1/5)\) code is a unique and tight spherical 5-design; see Ref. [4; Appx. A].
McLaughlin spherical code

References

[1]
McLaughlin, Jack. “A simple group of order 898,128,000.” Theory of finite groups. Benjamin New York, 1969. 109-111.
[2]
J. M. GOETHALS and J. J. SEIDEL, “THE REGULAR TWO-GRAPH ON 276 VERTICES”, Geometry and Combinatorics 177 (1991) DOI
[3]
P. Boyvalenkov, P. Dragnev, D. Hardin, E. Saff, and M. Stoyanova, “Universal minima of discrete potentials for sharp spherical codes”, (2023) arXiv:2211.00092
[4]
H. Cohn and A. Kumar, “Universally optimal distribution of points on spheres”, Journal of the American Mathematical Society 20, 99 (2006) arXiv:math/0607446 DOI
[5]
M. Dutour Sikirić, A. Schürmann, and F. Vallentin, “The Contact Polytope of the Leech Lattice”, Discrete & Computational Geometry 44, 904 (2010) arXiv:0906.1427 DOI
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: mclaughlin

Cite as:
“McLaughlin spherical code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/mclaughlin
BibTeX:
@incollection{eczoo_mclaughlin, title={McLaughlin spherical code}, booktitle={The Error Correction Zoo}, year={2022}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/mclaughlin} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/mclaughlin

Cite as:

“McLaughlin spherical code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/mclaughlin

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/classical/spherical/sharp_config/mclaughlin.yml.