[Jump to code hierarchy]

McLaughlin spherical code

Description

A spherical \((22,275,1/6)\) code associated with the McLaughlin graph; see Ref. [1] for an explicit construction.

Cousin

References

[1]
P. Boyvalenkov, P. Dragnev, D. Hardin, E. Saff, and M. Stoyanova, “Universal minima of discrete potentials for sharp spherical codes”, (2023) arXiv:2211.00092
[2]
H. Cohn and A. Kumar, “Universally optimal distribution of points on spheres”, Journal of the American Mathematical Society 20, 99 (2006) arXiv:math/0607446 DOI
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: mclaughlin

Cite as:
“McLaughlin spherical code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/mclaughlin
BibTeX:
@incollection{eczoo_mclaughlin, title={McLaughlin spherical code}, booktitle={The Error Correction Zoo}, year={2022}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/mclaughlin} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/mclaughlin

Cite as:

“McLaughlin spherical code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2022. https://errorcorrectionzoo.org/c/mclaughlin

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/classical/spherical/polytope/other/mclaughlin.yml.