[Jump to code hierarchy]

Jordan-Wigner transformation code[13]

Description

A mapping between qubit Pauli strings and Majorana operators that can be thought of as a trivial \([[n,n,1]]\) code. The mapping is best described as converting a chain of \(n\) qubits into a chain of \(2n\) Majorana modes (i.e., \(n\) fermionic modes). It maps Majorana operators into Pauli strings of weight \(O(n)\).

The Majorana modes \(\{\gamma_j\}\) are defined from Pauli strings as follows, \begin{align} \begin{split} \gamma_{0}&=\phantom{X}Z\\ i\gamma_{1}&= X Z\\ \gamma_{2}&=X\phantom{Z}\otimes\phantom{X}Z\\\gamma_{3}&=X\phantom{Z}\otimes XZ\\ i\gamma_{4}&=X\phantom{Z}\otimes X\phantom{Z}\otimes\phantom{X}Z\\ &\vdots \end{split} \tag*{(1)}\end{align} The \(X\)-type Pauli strings ensure that the resulting Majorana operators satisfy the appropriate anti-commutation relations, namely, \(\{\gamma_i,\gamma_j\} = \delta_{ij}\).

Encoding

Circuit of depth linear in the number of qubits \(n\). The depth can be reduced for particle-preserving systems [4] and in other contexts [5].

Cousins

References

[1]
P. Jordan and E. P. Wigner, “Über das Paulische Äquivalenzverbot”, The Collected Works of Eugene Paul Wigner 109 (1993) DOI
[2]
A. Y. Kitaev, “Unpaired Majorana fermions in quantum wires”, Physics-Uspekhi 44, 131 (2001) arXiv:cond-mat/0010440 DOI
[3]
R. Somma, G. Ortiz, J. E. Gubernatis, E. Knill, and R. Laflamme, “Simulating physical phenomena by quantum networks”, Physical Review A 65, (2002) arXiv:quant-ph/0108146 DOI
[4]
B. Harrison, D. Nelson, D. Adamiak, and J. Whitfield, “Reducing the qubit requirement of Jordan-Wigner encodings of \(N\)-mode, \(K\)-fermion systems from \(N\) to \(\lceil \log_2 {N \choose K} \rceil\)”, (2023) arXiv:2211.04501
[5]
M. Chiew and S. Strelchuk, “Discovering optimal fermion-qubit mappings through algorithmic enumeration”, Quantum 7, 1145 (2023) arXiv:2110.12792 DOI
[6]
Z. Jiang, A. Kalev, W. Mruczkiewicz, and H. Neven, “Optimal fermion-to-qubit mapping via ternary trees with applications to reduced quantum states learning”, Quantum 4, 276 (2020) arXiv:1910.10746 DOI
[7]
Y.-A. Chen and Y. Xu, “Equivalence between Fermion-to-Qubit Mappings in two Spatial Dimensions”, PRX Quantum 4, (2023) arXiv:2201.05153 DOI
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: jw

Cite as:
“Jordan-Wigner transformation code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2024. https://errorcorrectionzoo.org/c/jw
BibTeX:
@incollection{eczoo_jw, title={Jordan-Wigner transformation code}, booktitle={The Error Correction Zoo}, year={2024}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/jw} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/jw

Cite as:

“Jordan-Wigner transformation code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2024. https://errorcorrectionzoo.org/c/jw

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/quantum/qubits/stabilizer/fermion_into_qubit/jw.yml.