Description
For any linear code \(C\) over \(\mathbb{Z}_4\), the dual code is the set of quaternary strings that are orthogonal to the codewords of \(C\) under the standard inner product modulo \(4\).Protection
The dual of a code \(C=(n,4^{k_1} 2^{k_2})_{\mathbb{Z}_4}\) is \(C^{\perp} = (n,4^{n-k_1-k_2} 2^{k_2})\), whose generator matrix can be written in terms of the standard form of \(C\) [1; Prop. 1.2].Cousin
- Quaternary RM (QRM) code— The dual of a QRM\((r,m)\) code is the QRM\((m-r-1,m)\) code [2; Thm. 19].
Member of code lists
Primary Hierarchy
Parents
Dual code over \(\mathbb{Z}_4\)
Children
References
- [1]
- Z. X. Wan, Quaternary Codes (WORLD SCIENTIFIC, 1997) DOI
- [2]
- A. R. Hammons, P. V. Kumar, A. R. Calderbank, N. J. A. Sloane, and P. Solé, “The Z_4-Linearity of Kerdock, Preparata, Goethals and Related Codes”, (2002) arXiv:math/0207208
Page edit log
- Victor V. Albert (2026-01-02) — most recent
Cite as:
“Dual code over \(\mathbb{Z}_4\)”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2026. https://errorcorrectionzoo.org/c/dual_over_z4