[Jump to code hierarchy]

3D subsystem color code[1]

Alternative names: 3D gauge color code.

Description

A subsystem version of the 3D color code.

Threshold

Phenomenological noise: \(0.31\%\) under clustering decoder [2].

Cousins

  • 3D color code
  • Single-shot code— The 3D subsystem color code defined on the cube-truncated rhombic dodecahedral honeycomb, i.e., a tesselation of cubes and chamfered cubes (a.k.a. tetratruncated rhombic dodecahedra) [2; Fig. 1], is a single-shot code [2,3].
  • Symmetry-protected self-correcting quantum code— A particular gauge-fixed version of a subsystem code on a 3D lattice yields a self-correcting memory protected by one-form symmetries [5][4; Sec. IV D]. The symmetric energy barrier grows linearly with the length of a side of the lattice. When the system is coupled locally to a thermal bath respecting the symmetry and below a critical temperature, the memory time grows exponentially with the side length. The subsystem color code is not a self-correcting quantum memory if symmetry protection is removed [6].
  • Two-gauge theory code— The 3D subsystem color code can be ungauged [79,9] to obtain six copies of \(\mathbb{Z}_2\) gauge theory with one-form symmetries [5].
  • Symmetry-protected topological (SPT) code— Different stabilizer Hamiltonians of the 3D subsystem color code correspond to different SPTs, one of which describes the RBH model [5].
  • Raussendorf-Bravyi-Harrington (RBH) cluster-state code— Different stabilizer Hamiltonians of the 3D subsystem color code correspond to different SPTs, one of which describes the RBH model [5]. The RBH code for a certain boundary Hamiltonian is dual to the 3D subsystem color code [4; Sec. IV.C.1].

References

[1]
H. Bombin, “Gauge Color Codes: Optimal Transversal Gates and Gauge Fixing in Topological Stabilizer Codes”, (2015) arXiv:1311.0879
[2]
B. J. Brown, N. H. Nickerson, and D. E. Browne, “Fault-tolerant error correction with the gauge color code”, Nature Communications 7, (2016) arXiv:1503.08217 DOI
[3]
H. Bombín, “Single-Shot Fault-Tolerant Quantum Error Correction”, Physical Review X 5, (2015) arXiv:1404.5504 DOI
[4]
S. Roberts and S. D. Bartlett, “Symmetry-Protected Self-Correcting Quantum Memories”, Physical Review X 10, (2020) arXiv:1805.01474 DOI
[5]
A. Kubica and B. Yoshida, “Ungauging quantum error-correcting codes”, (2018) arXiv:1805.01836
[6]
Y. Li, C. W. von Keyserlingk, G. Zhu, and T. Jochym-O’Connor, “Phase diagram of the three-dimensional subsystem toric code”, Physical Review Research 6, (2024) arXiv:2305.06389 DOI
[7]
M. Levin and Z.-C. Gu, “Braiding statistics approach to symmetry-protected topological phases”, Physical Review B 86, (2012) arXiv:1202.3120 DOI
[8]
L. Bhardwaj, D. Gaiotto, and A. Kapustin, “State sum constructions of spin-TFTs and string net constructions of fermionic phases of matter”, Journal of High Energy Physics 2017, (2017) arXiv:1605.01640 DOI
[9]
W. Shirley, K. Slagle, and X. Chen, “Foliated fracton order from gauging subsystem symmetries”, SciPost Physics 6, (2019) arXiv:1806.08679 DOI
Page edit log

Your contribution is welcome!

on github.com (edit & pull request)— see instructions

edit on this site

Zoo Code ID: 3d_subsystem_color

Cite as:
“3D subsystem color code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2024. https://errorcorrectionzoo.org/c/3d_subsystem_color
BibTeX:
@incollection{eczoo_3d_subsystem_color, title={3D subsystem color code}, booktitle={The Error Correction Zoo}, year={2024}, editor={Albert, Victor V. and Faist, Philippe}, url={https://errorcorrectionzoo.org/c/3d_subsystem_color} }
Share via:
Twitter | Mastodon |  | E-mail
Permanent link:
https://errorcorrectionzoo.org/c/3d_subsystem_color

Cite as:

“3D subsystem color code”, The Error Correction Zoo (V. V. Albert & P. Faist, eds.), 2024. https://errorcorrectionzoo.org/c/3d_subsystem_color

Github: https://github.com/errorcorrectionzoo/eczoo_data/edit/main/codes/quantum/qubits/subsystem/topological/color/3d_subsystem_color.yml.